首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
成像速度是影响体绘制应用的关键 .为了提高成像速度 ,提出一种基于 Intel奔腾 SIMD和分割技术的快速体绘制算法 .仅仅应用奔腾 SIMD并行技术 ,常规光线投射算法的成像速度能够提高 2~ 5倍 .奔腾 SIMD并行指令与分割技术相结合 ,减少了大量空采样 ,进一步提高了成像速度 ,而且这种简单的分割技术能够快速地适应转换函数的改变 .在一台 P4 / 1.6 G的 PC机上 ,以 5 12× 5 12分辨率渲染时 ,该算法渲染速度比常规光线投射算法提高了 10多倍 ,使得等值面的体绘制速度能够达到 1~ 3帧 /秒 .实验结果表明 ,该算法具有渲染速度快、成像质量高等显著优点 ,而且不需要费时的预处理和特殊体视硬件 ,具有较大的实际应用价值 .  相似文献   

2.
作为体绘制中的一个经典绘制算法,光线投射算法理论简单同时能产生高质量的图像,被广泛应用于医学图像可视化领域。但在绘制过程中有大量的投射光线和体素的重采样,导致绘制速度较为缓慢。为提高绘制的速度,文中提出一种高效的光线投射体绘制算法,通过引入碰撞检测技术减少投射光线的数目,避免冗余光线的采样计算,同时采用光线跳跃方法在碰撞检测包围盒内跳过对空体素的重采样,加快了光线合成的过程。实验结果表明,改进后的算法不仅能保证所需要的图像质量,还能大幅度地减少采样计算的时间,高效地提高绘制速度。  相似文献   

3.
一种改进求交的自适应光线投射体绘制算法   总被引:1,自引:0,他引:1       下载免费PDF全文
光线投射算法是体绘制技术中的一种重要算法,但其自身存在采样效率低和绘制速度慢等问题。为了提高光线投射算法的绘制速度,本文提出了一种改进求交的自适应光线投射体绘制算法,算法采用一种快速求交方法和自适应采样来提高体绘制速度,试验结果表明该算法能在基本不影响图像质量的同时提高算法的速度。  相似文献   

4.
光线投射法是三维直接体绘制算法中的一种最基本方法,但简单的光线投射算法存在采样效率低和绘制速度慢的缺点。本文充分利用对象空间与图像空间的各种相关性,利用 对象空间中数据场的相关性,对采样点处的均匀性区域采用正方体进行度量,并以此来确定采样步长,在射线方向上采用自适应的采样方式,避免在采样点周围均匀性区域中中重复地进行采样,大大地提高了三维数据场的绘制速度。  相似文献   

5.
体绘制是三维数据可视化的主要方法之一。用于体绘制的数据体中包含有大量的空体素,导致光线投射算法进行没有意义的重采样计算,必然降低绘制算法效率。针对全空子数据体体绘制低效问题,本文提出基于GPU体高效绘制方法。利用八叉树数据结构组织数据,有效管理包含许多空体素的子数据体。通过绘制八叉树非全空叶子结点子数据体表面,使光线投射算法中起始和终止重采样位置更接近数据体中的可视部分,同时根据八叉树全空结点子数据体判定纹理查询结果,计算合适的跳跃步长,快速跳过八叉树中全空结点子数据体,减少无效重采样点。当数据体中空体素较多时,实现对原基于体包围盒表面绘制的GPU光线投射算法的加速。设计不透明度函数,凸显数据体中层位面,并将算法成功应用于地震数据可视化,取得很好应用效果。  相似文献   

6.
为克服传统算法中体绘制交互速度不流畅、重建耗时长、绘制效果单一的不足,实现了基于图形处理器(GPU)的光线投射算法用于医学层析图像实时体绘制,并能快速切换不同组织器官的绘制效果。首先,读入医学层析图像到计算机内存,构造体素;然后,设置相应体素属性(如插值方式、着色处理、光照参数)等,设计显示不同组织器官的颜色及不透明度传输函数;最后,GPU加载体素据并进行光线投射算法的计算。实验结果表明,在绘制速度上,GPU加速光线投射算法实现的多功能体绘制技术的绘制速度能达到每秒40帧以上,完全满足临床应用需求。在绘制质量上,用户交互中由于重采样而产生的锯齿现象明显低于CPU端实现的光线投射算法,GPU端与CPU端绘制时间的加速比在9倍左右。  相似文献   

7.
为克服传统算法中体绘制交互速度不流畅、重建耗时长、绘制效果单一的不足,实现了基于图形处理器(GPU)的光线投射算法用于医学层析图像实时体绘制,并能快速切换不同组织器官的绘制效果。首先,读入医学层析图像到计算机内存,构造体素;然后,设置相应体素属性(如插值方式、着色处理、光照参数)等,设计显示不同组织器官的颜色及不透明度传输函数;最后,GPU加载体素据并进行光线投射算法的计算。实验结果表明,在绘制速度上,GPU加速光线投射算法实现的多功能体绘制技术的绘制速度能达到每秒40帧以上,完全满足临床应用需求。在绘制质量上,用户交互中由于重采样而产生的锯齿现象明显低于CPU端实现的光线投射算法,GPU端与CPU端绘制时间的加速比在9倍左右。  相似文献   

8.
为提高光线投射算法的绘制速度和图像绘制质量,提出了一种针对类球形对象的改进光线投射算法。该算法首先设置球形包围盒的方法剔除对最后绘图结果没有影响的光线投射,用快速求交的方法来提高获取采样点的速度,通过自适应采样的方法加入新的采样点来提高绘制图像的质量。实验结果表明该算法不仅比传统方法绘制出的图像质量清晰,并且提高了算法的执行速度。  相似文献   

9.
基于成员体关系的医学数据剥离绘制算法   总被引:1,自引:1,他引:0  
针对修改传输函数或者使用特殊的光照效果时不能完全解决直接体绘制医学数据人体组织间的遮挡问题,提出一种基于成员体关系的分层剥离体绘制算法.利用梯度阈值函数判断采样点的类型,通过采样光线获得同种组织的标量值范围;用由移动最小二乘法按照拟合出的不同组织的分界标量值和空间位置来建立每个体素的成员体关系;将成员体关系用于分层剥离体绘制,以解决同类组织的遮挡问题,并采用自适应的光线投射算法提高图像的绘制效果和速度.实验结果表明,文中算法可以根据医学数据来确定相应的成员体关系,使被遮挡部分绘制效果清晰.  相似文献   

10.
基于数据场相关性的光线投射算法   总被引:4,自引:1,他引:3       下载免费PDF全文
光线投射算法是体绘制中的经典方法,这一算污具有结构清晰实现便利的特点。但简单的光线投射算法存在采样效率低和绘制精度低的缺点。本文利用数据场的相关性和不等步长的采样方法来改善泡线投射算法的品质,使它既有快速的优点又具有较高的成象精度  相似文献   

11.
视点相关的层次采样:一种硬件加速体光线投射算法   总被引:2,自引:0,他引:2       下载免费PDF全文
陈为  彭群生  鲍虎军 《软件学报》2006,17(3):587-601
光线投射是一种高质量的体绘制方法.它以图像空间为序,逐根光线遍历和采样体数据.因此,传统上,它只能在CPU上实现,因而速度慢,交互性不好.提出了一个新的视点相关的层次采样VDLS (view dependent layer sampling)结构,VDLS将光线上的所有采样点重新组织成一系列层,并简化为两个视点相关的几何缓冲器,进而在GPU(graphics processing unit)中用两个动态纹理表示.利用GPU的可编程性,光线投射算法的6个步骤(光线生成、光线遍历、插值、分类、着色和颜色合成)得以完全在GPU中实现.在此基础上,提出两个基于体空间和图像空间连贯性的加速技巧,快速剔除无效的光线.结合其他与渲染和颜色合成有关的技巧,VDLS将面向多边形绘制的图形引擎转化为体光线投射算法引擎,在透视投影方式下,每秒能处理1.5亿个插值、后分类与着色的光线采样点.实验结果表明,提出的方法能用于医学可视化、真实物理现象模拟、材质检测中灰度体数据快速交互的可视化与漫游.  相似文献   

12.
光线投射法是体绘制技术中的经典算法。该算法原理简单、明了,并能产生高质量的显示图像,但由于所有体素参与了图像绘制,运行速度慢,从而极大制约了其在交互可视化中的运用。论文利用光线穿过三维规则数据场时与某一方向平面簇交点的快速确定及光线投射方向确定后两相邻平面间所截取线段为定长的特点,简化了光线亮度积分公式,从而在图像质量不减低的情况下,快速进行图像绘制。  相似文献   

13.
基于CUDA海量空间数据实时体绘制研究   总被引:1,自引:0,他引:1  
针对海量空间科学数据的精细及实时三维绘制需求,提出并实现了一种基于CUDA语言的并行化光线投射体绘制加速算法,利用传统体绘制算法中光线投射法的可并行特点和GPU中高速的纹理查询的优点,通过一个实际坐标到纹理坐标的转换函数实现了对不规则采样数据的准确采样,并完成了绘制算法的CUDA并行化改造,通过CUDA语言利用GPU强大的并行计算能力实现了对海量空间数据的实时三维光线投射绘制.  相似文献   

14.
自然现象的可视化是计算机图形学和虚拟现实领域的重要研究内容。对传统光线投射算法分析的基础上进行改进,提出基于球壳体的光线投射算法。将GPU运用于球壳体数据场的体绘制,设计了基于球壳体数据场的顶点着色程序和像素着色程序。同时,对台风源数据格式进行解析,生成了用于台风可视化的体数据,采用提出的算法实现了台风云层和因子的可视化。实验结果表明,本文基于GPU的球壳体光线投射算法在球体表面较好地实现了实时台风可视化效果。  相似文献   

15.
基于片段的光线投射算法   总被引:4,自引:0,他引:4       下载免费PDF全文
光线投射算法是最常使用的体绘制算法之一,它能够产生高质量的结果图形,但是绘制的时间复杂度高。提出了一种基于片段的光线投射算法(segment-based ray casting,SRC),以实现加速。同许多加速技术一样,SRC利用体数据的数据一致性,但是却将优化重点放在融合阶段而不是传统的数据预处理阶段。SRC将连续的具有相似属性的重采样点合并成一个片段,然后对片段进行融合而不是对重采样点进行融合,从而减少了融合操作的次数和时间。对SRC从理论和实验两个方面进行验证。实验结果表明,软件实现的光线投射算法使用SRC后性能提高约30%,而基于GPU的光线投射算法使用SRC后性能提升的倍数与片段长度几乎相同,SRC易于与其他体绘制优化算法结合,具有较强的适用性。  相似文献   

16.
光线投射算法是一种应用广泛的体绘制技术的基本算法,其存在的主要问题是绘制速度较慢。为了提高光线投射算法的绘制速度,以满足医学图像三维重建的应用需求,在深入研究和比较各种光线投射加速算法的基础上,提出了以接近云算法为核心的、适用于医学图像三维重建的综合性加速算法,并在PC机平台上实现了该算法,在保证图像质量的同时绘制速度提高了一个数量级左右,为医学图像三维重建的实用化提供了有效的手段。  相似文献   

17.
针对传统光线投射算法计算量大、速度慢、在没有硬件加速情况下难以实时重建的问题,提出了一种基于GPU编程的快速计算重采样点值的光线投射算法。首先,设计一个GPU程序确定投射光线的终点与方向;其次,采用加速度步长采样方法确定重采样点的位置并利用快速复合插值方法计算重采样点的颜色值;最后,采用不透明度提前截止法进一步加速重建过程。实验结果表明,该方法计算复杂度低、执行效率高。在保证重建图像质量的同时,与现有基于CPU的光线投射算法相比,重建速度提高6倍,与基于GPU的传统光线投射算法相比,速度提高2倍。  相似文献   

18.
The lazy sweep ray casting algorithm for rendering irregular grids   总被引:1,自引:0,他引:1  
Lazy sweep ray casting is a fast algorithm for rendering general irregular grids. It is based on the sweep-plane paradigm, and it is able to accelerate ray casting for rendering irregular grids, including disconnected and nonconvex unstructured irregular grids (even with holes) with a rendering cost that decreases as the “disconnectedness” decreases. The algorithm is carefully tailored to exploit spatial coherence even if the image resolution differs substantially from the object space resolution. Lazy sweep ray casting has several desirable properties, including its generality, (depth-sorting) accuracy, low memory consumption, speed, simplicity of implementation and portability (e.g. no hardware dependencies). We establish the practicality of our method through experimental results based on our implementation, which is shown to be substantially faster (by up to two orders of magnitude) than other algorithms implemented in software. We also provide theoretical results, both lower and upper bounds, on the complexity of ray casting of irregular grids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号