首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用低温强碱法并掺入稳定剂Y2O3制成了纳米ZrO2(3Y)粉体,室温条件下用钢模和橡胶模具,在不同压力下把这些粉体进行成型压成素坯,然后在常压下于1000℃、1100℃、1200℃和1300℃四个温度中烧结。结果显示,由于橡胶模具成型的素坯受力均匀,烧结效果较钢模具优越,烧结的素坯体具有相对密度大、显微结构致密、气孔率低、显微硬度高的优点。采用400MPa橡胶等静压成型(RIP)方法,可在1300℃烧结出相对密度达到98%的优质纳米陶瓷。  相似文献   

2.
橡胶等静压成型纳米ZrO2(3Y)粉素坯   总被引:2,自引:0,他引:2  
对像等静压成型(Rubber isostatic pressing,RIP)制备纳米Y-TZP陶瓷作了初步研究。研究结果表明,通过RIP成型,可以获得相对密度较高、体积较大的ZrO2(3Y)素坯,并在较低温度下无压烧结得到纳米Y-TZP陶瓷。在1100℃下烧结2h所得的Y-TZP陶瓷的相对密度可达97%,晶粒仅为70nm左右,相对密度较高,平均孔径小是RIP成型素坯烧结温度低的主要原因。  相似文献   

3.
橡胶等静压成型纳米ZrO2(3Y)粉素坯   总被引:5,自引:0,他引:5  
对橡胶等静压成型(Rubber isostatic pressing,RIP)制备纳米Y-TZP陶瓷作了初步研究.研究结果表明,通过RIP成型,可以获得相对密度较高、体积较大的ZrO2(3Y)素坯,并在较低温度下无压烧结得到纳米Y-TZP陶瓷.在1100℃下烧结2h所得的Y-TZP陶瓷的相对密度可达97%,晶粒仅为70nm左右.相对密度较高、平均孔径小是RIP成型素坯烧结温度低的主要原因.  相似文献   

4.
氧化铝粉料的颗粒级配对成型行为和烧结行为的影响   总被引:8,自引:0,他引:8  
研究了颗粒级配对超细氧化铝粉体成型行为和烧结行为的影响.发现两种颗粒直径之比约为2的氧化铝粉体,一定比例混合后可获得比同样条件下单独的粉体高得多的成型密度.在细颗粒体积百分数约为33%时,应用压滤成型工艺(45MPa)获得的素坯相对密度高达72%.研究了压滤和干压成型方法对成型素坯密度及其烧结的影响.压滤成型的素坯,由于成型密度高、气孔分布窄、孔径小而有利于烧结,在较低的温度下可以达到理论密度,烧结体晶粒细小均匀,无明显缺陷;这一条件下于压成型(300MPa)得到的素坯由于有较宽的气孔尺寸分布,影响烧结,并且烧结体中有较大的气孔,不能完全致密.应用新的烧结理论对此进行了解释.  相似文献   

5.
超高压成型制备Y-TZP纳米陶瓷   总被引:24,自引:0,他引:24  
研究了用超高压成型制备Y-TZP纳米陶瓷的新方法.通过采用新的成型方法,在5000吨六面顶压机上实现了高达3GPa的超高压成型,获得相对密度达60%的3mol%Y-ZrO陶瓷素坯,比在450MPa下冷等静压成型所得素坯的密度高出13%.这种超高压成型所得素坯具有极佳的烧结性能,可在1050~1100℃下经无压烧结致密化.研究表明,这种素坯烧结性能好的主要原因是素坯的相对密度比较高,从而大大增加了物质的迁移通道.由于烧结温度极低,有利于制备ZrO晶粒尺寸<100nm的纳米陶瓷。在1050℃/5h的条件下,可烧结得到相对密度达 99%以上的 Y-TZP纳米陶瓷,平均晶粒仅为 80nm.  相似文献   

6.
以超重力反应沉淀法(HGRP)制备的纳米钛酸钡粉体为原料,以热膨胀仪为测试手段,对钛酸钡陶瓷的烧结动力学曲线特征进行了研究.结果表明,烧结温度和成型坯片密度都会对钛酸钡陶瓷的烧结过程产生影响,所表现出的烧结动力学曲线特征也不相同,而升温速率几乎不对坯片的烧结动力学曲线特征产生影响.随着烧结温度的升高,坯片收缩率增大,当烧结温度由1150℃升到1300℃时,收缩率由6.7%增大到23.2%;坯片的密度增大,收缩率减小,当成型坯片相对密度由61.08%增大到64.42%时,收缩率由17.5%减少到14.4%;升温速率增大,坯片开始收缩的温度及收缩率几乎不变.  相似文献   

7.
用纳米ZrO2(4Y)粉为原料,研究了单轴压片素坯成型特征.通过两次施压成型,降低了烧结致密温度,在1300℃常压烧结2小时,陶瓷体致密度达99.1%,烧结体晶粒长大减缓.片状烧结体1000℃和800℃时的电导率分别为4.23×10-2Ω-1cm-1和1.19×10-2Ω-1cm-1.  相似文献   

8.
为了改善8YSZ陶瓷的力学性能,以8YSZ双粒度粉体为研究对象,对其进行干压成型、无压烧结实验。对成型压力、保压时间及黏结剂用量等成型工艺参数进行了优化;利用正交实验对烧结方案进行了设计,讨论了烧结温度、升温速率、保温时间、烧结方式等烧结工艺参数对8YSZ陶瓷烧结性能和力学性能的影响,并优化出其烧结工艺参数。结果表明:选取PVA加入量10%(质量分数)、成型压力10MPa、保压时间30s的成型工艺参数,可压制出相对密度为54.9%的陶瓷坯体;选取烧结温度1500℃,保温时间4h,升温速率5℃/min,烧结方式裸烧的烧结工艺参数,可制备出相对密度为98.3%,抗弯强度为100.3MPa的8YSZ陶瓷。  相似文献   

9.
周贤界  徐华蕊 《材料导报》2007,21(8):136-139
采用水热法合成了SSZ(Sc2O3掺杂的ZrO2)纳米粉体,经成型、烧结得到电解质烧结体.对样品晶相组成、微观形貌、结构进行了表征,并对烧结体进行了电性能分析.研究表明:所得粉体于1500℃下烧结4 h可形成致密度达97%的立方萤石结构烧结体,比传统固相方法和Sol-gel法低200℃以上.随烧结温度升高和Sc2O3含量的增加,SSZ样品的电导率先增加后降低,经1500℃烧结的8mol%Sc2O3-ZrO2样品在900℃时电导率为0.23 S/cm,800℃为0.13 S/cm,优于采用固相法、共沉淀法、Sol-gel等方法制备的同类材料.  相似文献   

10.
以两面顶为成型设备,利用其超高压力(4.5GPa)来提高素坯的相对致密度,从而降低坯体的烧结温度、缩短烧结时间,并制备出高致密度的细晶碳化硅陶瓷。结果表明,经超高压成型后,碳化硅素坯的平均相对致密度为65.7%。与冷等静压成型后的坯体(45.5%)相比,提高了大约20%。在低压流动氮气保护下,超高压成型的坯体于1900℃下无压烧结30min,烧结体的致密度达到了98.3%,其晶粒尺寸在200nm左右。  相似文献   

11.
采用商业氧化铝粉体为原料,MgO为烧结助剂,采用干压结合冷等静压成型素坯,再经适当温度预烧得到具有一定密度的预烧体,对预烧体的晶粒生长与致密化过程进行了研究.素坯在1275℃/160MPa下热等静压烧结2h后得到了平均晶粒尺寸为650~850nm的氧化铝陶瓷.通过万能材料试验机、显微硬度仪测试抛光样品力学性能,得到其三点抗弯强度为(620±30) MPa,硬度HV10为(19.7±0.4)GPa,断裂韧性约2.52MPa·m1/2.  相似文献   

12.
20%纳米ZrO2(3Y)粉末加入到高纯亚微米Al2O3粉中,采用高压干压成型方法和恒速升温多阶段短保温烧结方法制备出不同烧结温度下的复相陶瓷。研究烧结温度对复相陶瓷力学性能的影响,通过XRD,EDS和SEM对复相陶瓷进行元素组成和微观结构分析。结果表明:烧结温度在很大程度上影响着复相陶瓷的力学性能和微观结构,常压烧结1600℃保温8h时,相对密度、维氏硬度和断裂韧性达到最大,分别为98.6%,18.54GPa和9.3MPa·m1/2,而基体晶粒尺寸为1.4~8.1μm,ZrO2相变量为34.6%。1600℃下复相陶瓷具有优质的微观结构,断裂方式为沿晶-穿晶混合断裂模式。ZrO2(3Y)粉体的加入,从相变增韧、内晶型颗粒增韧和裂纹偏转等多个方面提高了复相陶瓷的断裂韧性。  相似文献   

13.
以共沉淀-喷雾干燥法制备的Ce0.8 Sm0.2 O1.9(SDC)粉体为原料,模压成型后高温烧结获得SDC电解质陶瓷片.研究模压成型过程中加压时间、压力大小以及烧结温度对烧结体致密度的影响,利用XRD和SEM分别对不同烧结温度获得的烧结体结构和表面形貌进行分析.研究表明,压力30MPa、加压时间30min后获得的坯体,随着烧结温度的升高,烧结体致密度呈上升趋势,烧结温度达到1450℃时进入烧结后期,烧结体具有较高的致密度.此外,通过测定烧结过程中坯体收缩率,对SDC电解质陶瓷片的烧结动力学进行了研究,从而确定SDC电解质致密化的烧结温度为1300~1500℃.  相似文献   

14.
将粒径分别为1.5和25μm的堇青石粉体按一定比例球磨混匀,添加适当的粘结剂和造孔剂,经捏合、陈腐、挤出成型及烘坯处理后,程序升温至一定温度烧结2h制备膜支撑体.结果表明,细粉含量20%(质量分数)、1400℃烧结所得的支撑体综合性能较好:钝水通量为10.3m3/(m2·h);爆破压力为2.21MPa.其浸渍于5%(质...  相似文献   

15.
在不同温度下对中间相炭微球粉体进行了预氧化处理,将其模压成型并在N2保护下进行烧结,得到各向同性碳材料.考察了预氧化温度及时间对中间相炭微球烧结体的物理性能、力学性能和微观结构的影响.实验结果表明,将中间相炭微球粉体在200℃于空气中顸处理30min后,其烧结体的密度可达到1.654g/cm3,抗弯强度为56.06MPa.  相似文献   

16.
放电等离子超快速烧结氧化物陶瓷   总被引:21,自引:6,他引:15  
本文介绍一种氧化物陶瓷超快速烧结的新方法.用放电等离子烧结的方法对Al2O3、Y-TZP、YAG、Al2O3-ZrO22和莫来石等各种氧化物粉体进行了超快速烧结,采用2~3min升温到1200℃以上,不保温或保温2min,然后迅即在3min之内冷却至600℃以下的烧结温度,得到了直径为20mm的晶粒细、致密度高、力学性能好的烧结样品.对用化学共沉淀法自制的20mol%Al2O3-ZrO2(3Y)纳米粉体分别在1170~1500℃之间的7个不同温度下进行放电等离子烧结,升温速率为200℃/min,保温2min后;迅即在3min之内强制冷却至600℃以下.1350℃以上烧结得到的样品密度已接近理论密度,1250℃以上烧结得到的样品的断裂韧性K1c都大于6MPa·m1/2放电等离子超快速反应烧结所得到的ZrO2-莫来石复相陶瓷致密度高、力学性能好,ZrO2晶粒在莫来石基体中分布均匀,XRD结果表明,在1530℃烧结的样品中,已找不到ZrsiO4痕迹,说明在如此快速的烧结条件下;反应烧结已经可以完成.  相似文献   

17.
直接凝固注模成型氮化硅陶瓷   总被引:7,自引:0,他引:7  
直接凝固注模成型是一种新颖的原位凝固成型工艺,特别适合于复杂形状陶瓷部件的成型.通过粉体的表面改性、浆料pH值的调节以及引入高效分散剂等途径制备出了低粘度高固含量的氮化硅浆料,通过直接凝固注模成型可以获得适当的素坯密度和强度.坯体气孔分布均匀,为较窄的单峰分布,断口光滑平整,坯体各部位密度具有很好的均匀性.在相对较低的烧结温度下(1750℃),成型坯体经过无压烧结可达到理论密度的98%,基本实现致密化.烧结体结构均匀,晶粒均匀生长,发育良好.经1800℃烧结2h后,抗折强度达758.4 MPa,断裂韧性为6.3MPa·m1/2.  相似文献   

18.
AlN陶瓷的高压烧结研究   总被引:1,自引:0,他引:1  
以自蔓延高温合成的AlN粉体为原料,用六面顶压机在高压(3.1~5.0GPa)下实现了未添加烧结助剂的AlN陶瓷体的烧结.研究了烧结工艺参数对AlN烧结性能的影响.用XRD、SEM对AlN高压烧结体进行了表征.研究表明:高压烧结能够有效降低AlN陶瓷的烧结温度并缩短烧结时间,烧结体的结构致密.在5.0GPa/1300℃条件下高压烧结50min的AlN陶瓷的相对密度达94.9%.在5.0GPa/1700℃/125min条件下制备的AlN陶瓷晶格常数比其粉体减小了约0.09%.  相似文献   

19.
用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨, 煅烧生成YAG粉体, 再真空烧结制备高致密YAG陶瓷. 采用DTA-TG对球磨Al-Y2O3粉体进行分析, 采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征. 实验表明: Al-Y2O3粉体在~569℃时, Al粉强烈氧化, 并与Y2O3粉反应, 600℃煅烧出现YAM相, 随煅烧温度升高出现YAP相, 1200℃煅烧生成YAG粉体. 成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷, YAG陶瓷相对密度可达98.6%, 晶粒生长均匀, 晶粒尺寸为810μm.  相似文献   

20.
为了探讨凝胶注模成型工艺在超细粉体领域的应用,研究了超细ZrO2粉体室温下的凝胶过程.通过记录凝胶过程中料浆温度的变化,采用扫描电镜观察坯体显微组织结构,并检测材料强度等方法,研究了去离子水/单体/交联剂的比例及引发剂和催化剂用量对超细ZrO2室温凝胶过程的影响.研究表明:去离子水/单体/交联剂比例(质量比)以100/15/1为宜,此时可形成稳定的网络结构;调整引发剂和催化剂的用量及比例,可以控制料浆的停留时间和聚合反应时间,在预混液/引发剂/催化剂比例(体积比)为100/1/0.5时,停留时间和聚合反应时间分别为20min和28min;超细ZrO2粉体凝胶注模成型工艺可以在室温下进行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号