首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
程扬 《微电子学》2014,(1):6-9,13
采用5+7的分段方式,设计了一种12位1 GHz电流舵数模转换器(DAC),分析了电流源版图误差对DAC性能的影响。为了抵消DAC版图的梯度失配误差,提出一种新型随机增减动态元件匹配(DEM)算法,并将其加入到高5位温度计码中,以优化DAC的动态性能。基于TSMC 0.18 μm CMOS工艺,完成了整个DAC的电路设计,并与常规DEM算法进行仿真比较,结果显示,在输入数据频率分别为10 MHz和120 MHz时,该DAC的无杂散动态范围(SFDR)分别提升7.2 dB和3.8 dB。  相似文献   

2.
采用5+7的分段方式,设计了一种12位1GHz电流舵数模转换器(DAC),分析了电流源版图误差对DAC性能的影响。为了抵消DAC版图的梯度失配误差,提出一种新型随机增减动态元件匹配(DEM)算法,并将其加入到高5位温度计码中,以优化DAC的动态性能。基于TSMC0.18μm CMOS工艺,完成了整个DAC的电路设计,并与常规DEM算法进行仿真比较,结果显示,在输入数据频率分别为10MHz和120MHz时,该DAC的无杂散动态范围(SFDR)分别提升7.2dB和3.8dB。  相似文献   

3.
江金光  何怡刚  吴杰 《半导体学报》2003,24(12):1324-1329
提出了一种12位80 MHz采样率具有梯度误差补偿的电流舵D/ A转换器实现电路.12位DAC采用分段式结构,其中高8位采用单位电流源温度计码DAC结构,低4位采用二进制加权电流源DAC结构,该电路中所给出的层次式对称开关序列可以较好地补偿梯度误差.该D/ A转换器采用台湾U MC 2层多晶硅、2层金属(2 P2 M) 5 V电源电压、0 .5μm CMOS工艺生产制造,其积分非线性误差小于±0 .9L SB,微分非线性误差小于±0 .6 L SB,芯片面积为1.2 7mm×0 .96 m m ,当采样率为5 0 MHz时,功耗为91.6 m W.  相似文献   

4.
提出了一种12位80MHz采样率具有梯度误差补偿的电流舵D/A转换器实现电路.12位DAC采用分段式结构,其中高8位采用单位电流源温度计码DAC结构,低4位采用二进制加权电流源DAC结构,该电路中所给出的层次式对称开关序列可以较好地补偿梯度误差.该D/A转换器采用台湾UMC 2层多晶硅、2层金属(2P2M)5V电源电压、0.5μm CMOS工艺生产制造,其积分非线性误差小于±0.9LSB,微分非线性误差小于±0.6LSB,芯片面积为1.27mm×0.96mm,当采样率为50MHz时,功耗为91.6mW.  相似文献   

5.
刘凡  吴金  黄晶生  薛海卫  姚建楠   《电子器件》2007,30(1):283-286
在研究高速D/A转换器的基础上,设计了一种5 V 10 bit高速分段式温度计码D/A转换器.设计的5-1-4温度计译码电路以及对版图布局的优化,使得DAC的DNL和INL最小,该电路的核心由三段式温度计编码控制的47个电流源构成.基于上华0.5μm工艺,采用HSPICE仿真工具对其进行仿真,得到在200 MHz的采样频率下对50 Ω负载满量程输出为45mA,非线性误差为DNL<0.5LSB,INL<0.75LSB.  相似文献   

6.
基于布朗运动的分段式电流舵DAC成品率研究   总被引:1,自引:0,他引:1  
根据随机过程布朗运动理论,基于分段式电流舵D/A转换器的积分非线性概率密度,建立了积分非线性误差(INL)和D/A转换器分段比的数学模型,获得电流源失配对芯片成品率影响的近似公式,并通过蒙特卡罗方法进行了仿真验证.结果表明,低位采用温度计码编码的D/A转换器成品率较低,而低位采用二进制码编码的D/A转换器成品率较高.当转换位数N<12时,二进制数码越大(>[N/2]),成品率越大;N≥12时,二进制加权码位数不宜过大.  相似文献   

7.
一种电流自校准14位、50Msample/s CMOS DAC   总被引:1,自引:1,他引:1  
朱臻  洪志良  黄秋庭 《电子学报》2003,31(2):306-308
文章介绍一种14位、50Msample/s的电流驱动型CMOS DAC.该电路的核心由31个温度计编码的高5位电流源、15个温度计编码的中间4位电流源和5个二进制编码的低5位电流源构成.为了达到更高的静态线性度,一种新颖的电流自校准技术被提出,用来对最高5位的电流源进行自校准.这种自校准完全是在后台操作的,并不需要一个替代电流源去替代正在被校准的那一路电流源.该芯片采用0.25μm标准CMOS工艺制造,芯片面积为3.54mm2.测试结果显示芯片的静态分辨率达到12位.  相似文献   

8.
莫太山  叶甜春  马成炎   《电子器件》2008,31(2):441-445
对高速CMOS闪烁型模数转换器中的六种误差源进行了研究.每个误差源会潜在的限制模数转换器的线性度和信噪比.这些误差源包括基准电压的非理想因素、前置放大器引入的输入有关的时间延迟、比较器的回程噪声、时钟抖动与分布特性、温度计码中的火花码、比较器的亚稳态.在每种误差源研究的基础上,给出了相应的电路解决技术,使得吉赫频率范围中等分辨率的CMOS闪烁型ADC成为现实.  相似文献   

9.
佟星元  王超峰  贺璐璐  董嗣万 《电子学报》2019,47(11):2304-2310
针对分段电流舵数/模转换器(Digital-to-Analog Converter,DAC),通过理论分析和推导,研究电流源阵列系统失配误差和寄生效应对非线性的影响,采用电流源阵列QN旋转游走版图布局方案,能够减小电流源系统失配的一次误差,而且版图布线简单,由寄生效应引起的电流源失配较小,利于DAC非线性的优化.基于0.18μm CMOS,采用"6+4"的分段结构,设计了一种10位500MS/s分段电流舵DAC,流片测试结果表明,在输入频率为1.465MHz,采样速率为500MS/s的条件下,无杂散动态范围(Spurious Free Dynamic Range,SFDR)为64.9dB,有效位数(Effective Number of Bits,ENOB)为8.8 bit,微分非线性误差(Differential Non-linearity,DNL)和积分非线性误差(Integral Non-linearity,INL)分别为0.77LSB和1.12LSB.  相似文献   

10.
基于0.18μm CMOS工艺,设计了一种电源电压为3.3 V/1.8 V(模拟电路部分电源电压为3.3 V,数字电路部分电源电压为1.8 V)、最大刷新率为200 MSPS、分辨率为14位的高速D/A转换器(DAC).该DAC采用传统的5-4-5温度计码与二进制权重码混合编码的分段电流舵结构.对电路中的关键模块,如运算放大器、带隙基准源,进行了优化设计;给出了整体电路的版图设计.仿真结果显示,采样频率为200 MHz时,DAC的SFDR为87 dB左右.  相似文献   

11.
介绍了一种基于分段随机温度计码的动态匹配算法。该算法可以有效抑制电流源失配造成的谐波失真,因此可以降低对电流源匹配的需求。在此算法基础上,针对芯片面积,优化了电流源尺寸选取与分段位数的选择。在SMIC 0.13μm CMOS工艺中实现了一款10位电流舵数模转换器(Digial-to-analog converter,DAC),单通道的面积为0.05mm2。测试结果显示,微分非线性(Differential non-linearity,DNL)与积分非线性(Integral nonlinearity,INL)分别为0.58LSB和0.56LSB,无杂散动态范围(Spurious free dynamic range,SFDR)最高可达80dBc。单通道DAC在1.2V数字/模拟电源电压下整体功耗小于3mW。  相似文献   

12.
介绍了一种基于分段随机温度计码的动态匹配算法。该算法可以有效抑制电流源失配造成的谐波失真,因此可以降低对电流源匹配的需求。在此算法基础上,针对芯片面积,优化了电流源尺寸选取与分段位数的选择。在SMIC 0.13μm CMOS工艺中实现了一款10位电流舵数模转换器(Digial-to-analog converter,DAC),单通道的面积为0.05mm2。测试结果显示,微分非线性(Differential non-linearity,DNL)与积分非线性(Integral nonlinearity,INL)分别为0.58LSB和0.56LSB,无杂散动态范围(Spurious free dynamic range,SFDR)最高可达80dBc。单通道DAC在1.2V数字/模拟电源电压下整体功耗小于3mW。  相似文献   

13.
乔娟  邵丙铣 《微电子学》2001,31(5):329-332
介绍了自交准电流单元的原理,对其误差进行了分析和推导,并针对VLSI工艺可能产生的失配设计了参考电流源、电流拷贝单元及备用电流拷贝单元,提出了新的克服沟道电荷注入误差的方法,模拟结果证明,电流自校准技术在克服器件失配方面有优势,自校准电流拷贝单元精度 很高,适用于高精度电流模式D/A转换器。  相似文献   

14.
电流源是一种能向负载提供恒定电流的电路,电流源的匹配程度在模拟电路设计,尤其是在D/A转换器中有着重要的影响.为此,文章研究分析了电流源的失配特性,并针对电流源的失配提出了一种自校准电流源技术,该方法中的每一个位电流输出的大小并不依赖于每个存储管特定的VT和β值,而是等于参考电流的大小.这种电流自校准技术能解决VLSI工艺中由于器件失配而造成的电流精度变差问题.  相似文献   

15.
提出了一种8bit 80MHz采样率具有梯度误差补偿的温度计码D/A转换器实现电路,该电路中所给出的层次式对称开关序列可以较好地补偿梯度误差,该D/A转换器采用台湾UMC 2层多晶硅,2层金属,5V电源电压,0.5μm CMOS工艺生产制造,其积分非线性误差以及微分非线性误差均小于0.5LSB,芯片面积为1.275mm×1.05mm,当采样率为50MHz时,功耗为56mW。  相似文献   

16.
一种大电压输出摆幅低电流失配电荷泵的设计   总被引:1,自引:0,他引:1  
在分析了基本锁相环电荷泵工作机制的基础上,提出一种新型的电荷泵结构,该电荷泵在非常宽的电压范围内具有很低的电流失配,解决了传统电荷泵结构所具有的电荷注入、时钟馈通和电荷共享等问题,并且非常容易实现电荷泵充放电电流的数字控制.基于SMIC 0.18 μm CMOSRF工艺库设计的实际电路,使用Cadence工具仿真结果表明,在电源电压2.0 V时,输出电压为0.3~1.63 V,充放电电流最大失配率小于0.1%,电流绝对值偏移率小于0.6%,说明这种新型电荷泵结构具有良好的性能.  相似文献   

17.
电流舵型数模转换器(DAC)广泛应用于通信系统。采用电流分叉结构的电流舵型DAC可以极大地减小电流源阵列的面积。提出一种可以应用于采用电流分叉结构的电流舵型DAC的数字校准技术。提出的后台校准技术可以同时消除高位电流源阵列和低位电流源阵列的失配误差。基于0.18μm CMOS工艺,设计并流片了一款14bit 200MS/s电流舵型DAC,经过数字校准后,无杂散动态范围(SFDR)能够提高至少24dB。在时钟频率为200MS/s,输出信号为2MHz时,SFDR能够达到80dB以上。芯片面积为1.26mm2,功耗为125mW。  相似文献   

18.
邓红辉  周福祥  付年华  付振达 《微电子学》2018,48(2):156-161, 166
设计了一种用于12位折叠插值ADC前台校准的高线性度DAC。该DAC包括电流源、开关电路、译码电路和电流-电压转换器。电流-电压转换器采用带共模反馈和增益提高技术的运放,具有高的共模抑制比和高的输出线性度。电流源的版图设计中考虑了电流源匹配特性,提出了“V”型布局方案,有效抑制其梯度误差和对称误差,提高了DAC转换线性度。在TSMC 0.18 μm CMOS工艺下对DAC进行仿真。结果表明,当输入信号频率为4.101 5 MHz、采样频率为25 MHz时,DAC的有效位数达到7.97位。  相似文献   

19.
基于SMIC 40 nm CMOS工艺,提出了一种改进型电荷泵电路。在传统电荷泵锁相环中,电荷泵存在较大的电流失配,导致锁相环产生参考杂散,使锁相环输出噪声性能恶化。设计的电荷泵电路在电流源处引入反馈,降低了电流失配。仿真结果表明,在供电电压为1.1 V,电荷泵充放电电流为0.1 mA,输出电压在0.3~0.7 V范围变化时,电荷泵的电流失配率小于0.83 %,锁相环的输出参考杂散为-65.5 dBc。  相似文献   

20.
电流舵型数模转换器(DAC)广泛应用于通信系统。采用电流分叉结构的电流舵型DAC可以极大地减小电流源阵列的面积。提出一种可以应用于采用电流分叉结构的电流舵型DAC的数字校准技术。提出的后台校准技术可以同时消除高位电流源阵列和低位电流源阵列的失配误差。基于0.18μm CMOS工艺,设计并流片了一款14bit 200MS/s电流舵型DAC,经过数字校准后,无杂散动态范围(SFDR)能够提高至少24dB。在时钟频率为200MS/s,输出信号为2MHz时,SFDR能够达到80dB以上。芯片面积为1.26mm2,功耗为125mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号