首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
用4,4′-二氨基二苯醚(ODA)作为二胺,3,3′,4,4′-二苯醚四羧酸二酐(ODPA)及2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,合成了可溶性共聚聚酰亚胺。用红外光谱(FT-IR)、差示扫描量热(DSC)、热重分析(TG...  相似文献   

2.
使用4-苯乙炔苯酐(4-PEPA),3,3',4,4'-二苯醚四酸二酐(ODPA),3,4-二氨基二苯醚(3,4-ODA),1,3-双(4-氨基苯氧基)苯(1,3,4-APB)和1,4-双(4'-氨基-2'-三氟甲基苯氧基)苯(6FAPB)分别合成了六种设计分子量为1250的聚酰亚胺低聚物RTM1-6,并对低聚物的熔体黏度及熔体黏度稳定性和热性能等进行了系统研究.实验结果表明,用含有醚键及氟原子的混合二胺合成的系列树脂,其熔体黏度较低,熔体稳定性较好,可用于RTM成型工艺.但树脂的玻璃化转变温度相对较低.  相似文献   

3.
可溶性含羟基聚酰亚胺的制备及其性能研究   总被引:2,自引:0,他引:2  
合成了含羟基的二胺单体4,4′-二氨基-4″-羟基三苯甲烷(DHTM),并将该单体分别同六氟异叉丙基二苯四羧酸二酐(6FDA),3,3′,4,4′-二苯醚四羧酸二酐(ODPA)和4,4′,-二(4,4′,-异丙叉二苯氧基)四羧酸二酐(BPADA)反应制备了3种结构的聚酰亚胺。溶解性实验表明,这3种聚合物在非质子极性溶剂中均显示出良好的溶解性。此外,还对聚酰亚胺薄膜进行了拉伸和动态机械热性能测试。  相似文献   

4.
以双酚A、2,4-二硝基氯苯、马来酸酐(MA)、4,4′-二氨基二苯醚(ODA)、3,3′,4,4′-四甲酸二苯醚二酐(ODPA)为主要原料,经三步法合成得到BDAPPP型聚酰亚胺(ODPA/44ODA/MA/BDAPPP-PI)薄膜。采用红外光谱分析、热失重分析、力学性能分析和介电分析对该薄膜进行表征。结果表明:BDAPPP型聚酰亚胺薄膜具有良好的耐热性能、优良的力学性能和绝缘性能。  相似文献   

5.
以异构的联苯二酐(BPDA)、二苯醚二酐(ODPA)以及2-苯基-4,4′-二氨基二苯醚(p-ODA)为原料,通过一步法或两步法,合成了一系列异构聚酰亚胺,并表征了这类聚酰亚胺的溶解性、热性能和力学性能。结果表明:基于p-ODA的聚酰亚胺在有机溶剂中具有优异的溶解性;基于p-ODA的异构聚酰亚胺都是非晶结构,且聚酰亚胺的溶解性和玻璃化温度(Tg)呈现3,3′-位3,4′-位4,4′-位的趋势,聚合物Tg250℃。聚合物4,4′-ODPA/p-ODA具有较优的热稳定性,5%热失重温度(T5%)=551℃,聚合物3,4′-ODPA/p-ODA和4,4′-ODPA/p-ODA具有相似的机械性能。异构BPDA/p-ODA系列聚酰亚胺具有相似的热稳定性,T5%550℃,聚合物4,4′-BPDA/p-ODA的机械性能优异,薄膜拉伸强度为182.4MPa、模量为3.5GPa、断裂伸长率为44.2%。  相似文献   

6.
以3,3′,4,4′-二苯甲酮二酐(BTDA)、均苯四甲酸二酐(PMDA)、4,4′-二氨基二苯砜(DDS)和4,4′-二氨基二苯醚(ODA)为单体,采用微波辐射溶液缩聚得到一种四元共缩聚聚酰胺酸(PAA),然后经亚胺化得到聚酰亚胺(PI)。通过对数比浓黏度(ηinh)、红外光谱(FT-IR)、核磁(1H-NMR)、溶解性测试和热重分析(TGA)对聚合物进行了结构表征和性能测试。结果表明,微波辐射能显著提高反应速度、PAA的相对分子质量和产率;FT-IR表明生成了预期的聚合物;1H-NMR表明PAA亚胺化度达95%以上;溶解性测试表明PAA具有较好的溶解性;TGA表明所合成的PI具有较高的热氧化稳定性和热稳定性。  相似文献   

7.
采用3,3′,4,4′-二苯醚四甲酸二酐(3,3′,4,4′-ODPA),4,4′-二氨基二苯醚(4,4′-ODA)和3,4’-二氨基二苯醚(3,4′-ODA)为原料合成了共聚酰亚胺,实验中还以邻苯二甲酸酐(PA)为分子量调节剂,制备了理论分子量为10000的共聚酰亚胺,主要研究了其热性能和结晶性能。结果表明,与均聚型聚酰亚胺(ODPA/4,4′-ODA为原料合成)比较,间位异构体3,4′-ODA的加入使聚酰亚胺的玻璃化转变温度降低。经过等温结晶处理后,能够在DSC测试中出现较明显的熔融峰,而且延长结晶时间或者升高结晶温度有利于晶体的进一步完善。但是当共聚单体3,4′-ODA的加入量增加到10%(摩尔比)时,即使经过较长时间的等温处理,该共聚酰亚胺依然为无定形结构。  相似文献   

8.
通过分子设计制备一种含双叔丁基结构的刚性芳香二胺单体——4,4′-二氨基苯基-3″,5″-二叔丁基甲苯,将该二胺单体分别与3种不同的商品化芳香二酐(3,3′,4,4′-联苯四酸二酐(BPDA)、3,3′,4,4′-二苯醚酐(ODPA)、3,3′,4,4′-二苯酮四酸二酐(BTDA))采用一步高温缩聚制备了3种新型聚酰亚胺NPI(3a~3c)。该类聚酰亚胺具有优异的溶解成膜性能,在室温可溶解于N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、间甲酚等高沸点溶剂中,在加热时还能溶解于CHCl_3,CH_2Cl_2,THF等低沸点溶剂,并可通过其聚合物溶液浇铸得到柔韧的薄膜;所制聚酰亚胺薄膜具有优良的热性能,玻璃化转变温度(T_g)范围为262~303℃,在N_2中质量损失10%的温度超过523℃;具有优异的光学性能,所制薄膜还具有较浅的颜色和良好的光学透过性,在450 nm波长光下的透光率为69%~76%,截止波长为341~353 nm。  相似文献   

9.
砜基取代高折射率高透明性聚酰亚胺的合成与性能   总被引:1,自引:0,他引:1  
首先合成了同时含有砜基与硫醚键的二胺单体,4,4′-双(4-胺基苯硫基)二苯砜(BADPS).采用BADPS分别与4种二酐单体,3,3′,4,4′-联苯四羧酸二酐(BPDA)、3,3′,4,4′-二苯醚四羧酸二酐(ODPA)、4,4′-双(3,4-二羧基苯硫基)二苯硫醚二酐(3SDEA)以及1,2,3,4-环丁烷四羧酸二酐(CBDA)通过两步聚合工艺制备了一系列聚酰亚胺(PI).制备的PI薄膜具有优良的综合性能,包括良好的热稳定性、可见光波长范围内优良的透明性以及高折射率与低双折射.10mm厚的PI薄膜在450nm处的透光率超过80%.全芳香族PI(PI-1~PI-3)的折射率>1.70,双折射<0.02.  相似文献   

10.
以2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4,4′-二氨基二苯甲烷(MDA)作为二胺单体,3,3′,4,4′-二苯酮四酸二酐(BTDA)作为二酐单体,N-甲基砒咯烷酮(NMP)为溶剂,通过常规的两步法经热亚胺化合成了三元共聚型聚酰亚胺结构胶。采用傅里叶变换红外光谱表征了聚合物的结构;热重-差热分析(TG-DTA)表明,所合成的聚酰亚胺具有良好的热稳定性,在N2气氛中起始降解温度接近500℃,800℃质量保持率大于50%。单搭接拉伸剪切测试结果表明,所得聚酰亚胺结构胶对不锈钢片的室温粘接强度(LSS)高达14.13MPa,350℃下的拉伸剪切强度达1.91MPa。  相似文献   

11.
耐350℃ RTM聚酰亚胺树脂及其复合材料性能   总被引:3,自引:0,他引:3       下载免费PDF全文
以苯乙炔苯酐(4-PEPA)为封端剂,异构联苯四甲酸二酐(α-BPDA)作为二酐单体,通过选择合适的二胺单体及优化配比,研制了耐温等级高于350℃,适用于RTM工艺的聚酰亚胺基体树脂HT-350RTM,选用U3160单向碳纤维织物作为增强体,采用RTM工艺制备了HT-350RTM树脂基复合材料层合板(U3160/HT-350RTM)。结果表明:HT-350RTM树脂最低黏度可达390 mPa·s,在280℃下保持黏度低于1 Pa·s的时间大于2 h,能够满足RTM工艺的要求。经过高温固化后,HT-350RTM树脂的玻璃化转变温度为392℃,热分解温度(分解5%)高达537℃。采用RTM工艺制备的U3160/HT-350RTM复合材料层合板孔隙率仅为0.34%,室温下具有良好的基本力学性能,315℃和350℃下的力学性能保持率均高于60%,能够满足350℃工况下的长期使用要求。  相似文献   

12.
含氟半脂环透明聚酰亚胺薄膜的制备和性能   总被引:1,自引:0,他引:1  
分别将脂环族二酐单体1,2,3,4-环丁烷四酸二酐(CBDA,Ⅰ)、1,2,4,5-环戊烷四酸二酐(CPDA,Ⅱ)和1,2,4,5-环己烷四酸二酐(CHDA,Ⅲ)与芳香族含氟二胺1,4-双(4-胺基-2-三氟甲基苯氯基)苯(6FAPB,a)和4,4′-双(4-胺基-2-三氟甲基苯氧基)联苯(6FBAB,b)反应制备两个系列的含氟半脂环族聚酰亚胺(PI),研究了PI薄膜的热性能和光学性能.结果表明,制备出的PI薄膜具有良好的热稳定性,在氮气中起始热分解温度超过450℃、玻璃化转变温度超过250℃,在可见光范围内(400-700 nm)具有优良的透明性,450 nm处的透过率超过88%.两类PI薄膜在光通讯波段(1.30μm与1.55μm)均没有显著的吸收.  相似文献   

13.
采用相转移催化法合成了含联炔多炔丙基的单体N,N,N’,N’-四炔丙基-1,4-双(3-氨基苯)-丁二炔(TPBAPB),通过红外、核磁、元素分析等方法表征了TPBAPB的结构。以TPBAPB与4,4’-联苯二苄叠氮(BAMBP)热聚合条件下的1,3-偶极环加成反应制备了一种新型的聚三唑树脂(H-PTA),利用红外和差示扫描量热法研究了树脂的固化行为,并通过动态力学分析和热失重分析考察了炔基与叠氮基不同摩尔比对树脂热性能的影响。结果表明,树脂具有良好的加工性能,能在较低的温度下进行固化(80℃左右),当炔基与叠氮基的摩尔比为1.2∶1.0时,固化后的树脂具有最佳的热性能,玻璃化转变温度(Tg)达到298℃,在氮气中5%的热失重温度(Td5)达到363℃。  相似文献   

14.
氢碘酸、2-氯-5-溴嘧啶、对苯二酚以及对溴硝基苯等为原料,通过碘代、Ullmann、Williamson以及还原等反应合成了5,5′-双[P-(4-氨基苯氧基)苯氧基]联嘧啶,用元素分析,IR和1H-NMR等手段对化合物的组成和结构进行了表征。这种二胺与联苯四酸二酐(BPDA)通过两步法聚合获得含联嘧啶单元的聚酰亚胺,通过红外、差示扫描量热仪(DSC)和热重分析等实验测试了该类聚合物的结构、热性能、力学性能及结晶性能。新型聚酰亚胺分子结构单元中多个醚键以及联嘧啶单元氮杂原子的极性综合作用,使其玻璃化转变温度达到262℃,具有较好的热稳定性。  相似文献   

15.
用4-苯基-2,6-双[3-(4-氨基-2-三氟甲基苯氧基)苯基]吡啶(m,p-6FPAPP)作为二胺,3,3′,4,4′-二苯酮四甲酸二酐(BTDA)及2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,合成了可溶性含氟聚酰亚胺。用FT-IR、DSC、TGA、UV-vis、溶解性和吸水率测试对聚合物的结构和性能进行了表征。结果表明,FT-IR测试在1780 cm-1、1720 cm-1和1380 cm-1左右出现了聚酰亚胺的特征吸收峰。所得聚酰亚胺在常见溶剂(如间甲酚,DMF,N,N-二甲基乙酰胺(DMAc),二甲基亚砜(DMSO),N-甲基吡咯烷酮(NMP),四氢呋喃(THF))中可溶解;在氮气氛中,玻璃化转变温度(Tg)为202.1℃~219.7℃,10%失重温度为537.0℃~572.8℃,800℃质量保持率为60.7%~63.1%。PI膜的紫外截止波长为375 nm~380 nm,吸水率为0.55%~0.63%。  相似文献   

16.
通过低温溶液亲电共缩聚合成了聚芳醚醚酮醚砜醚酮(Ia)、聚芳醚酮酮醚砜醚酮(Ib),甲基取代、双邻位甲基取代的聚芳醚酮酮醚酮醚砜醚酮(Ic、Id)等4种结构新型的共聚物。用傅里叶红外光谱仪(FT-IR)、核磁共振(1H-NMR)、差示扫描量热仪(DSC)、热重分析(TGA)、X射线衍射仪(WAXD)对聚合物进行了结构表征和性能测试。结果表明,共聚物有较高的玻璃化转变温度(Tg)177℃~188℃;较高的热分解温度(Td5%≥460℃),共聚物能溶解于N-甲基-2-吡咯烷酮,四氯乙烷和浓硫酸中;甲基取代的共聚物溶解性得到了明显改善,室温下还能溶于二氯甲烷、二氯乙烷、氯仿、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中。  相似文献   

17.
PMDA/ODA型聚酰亚胺的共聚改性研究   总被引:1,自引:1,他引:0  
以1,3-双(4-氨基苯氧基)苯(队PB134)和4,4'-二氨基二苯醚(ODA)为二胺单体,与均苯四甲酸二酐(PM-DA)进行共聚,合成了一系列具有一定溶解性的聚酰亚胺(PI).采用IR、TGA、DSC、XRD和拉伸实验等手段,对其结构和性能进行了研究.结果表明:共聚酰亚胺(CoPI)薄膜为非晶态结构,其热性能和拉伸强度与均聚物相当,模量有所降低,而断裂伸长率显著提高.  相似文献   

18.
《Materials Letters》2006,60(17-18):2132-2137
The thermal and fluorescent properties of 4,4-bis(5-methyl-2-beazoxoazol)ethylene (Hostalux KS-N), 1,4-bis(benzoxazolyl-2-yl)naphthalene (Hostalux KCB), 2,5-bis-(5-tertbutylbenzoxazole-2-yl) thiophene (Uvitex OB), 2,2′-(4,4′-diphenolvinyl)dibenzoxazol (Uvitex OB-1), and 1,1′-biphenyl-4,4′-bis(2-(methoxyphenyl)ethenyl) (Uvitex 127) have been investigated. All of them exhibit good thermal stability (> 300 °C) and high fluorescent quantum yields (> 0.8). Furthermore, we also have successfully blended these optical brighteners into cycloolefin copolymers with the antioxidant (Irganox HP2921) to improve the discoloration after pelletization based on their whitening effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号