首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
CaCO3影响选择性非催化还原法脱硝性能。文中采用固定床反应器,结合傅里叶变换红外光谱气体分析仪测量气体组分,研究了温度(650~850℃)、NH3浓度(100×10-6~1500×10-6)和O2浓度(0-4%)对CaCO3催化NH3氧化反应的影响。研究结果表明,CaCO3对NH3氧化反应有催化作用。NH3催化氧化反应的转化率和产物NO的选择性随NH,浓度增加而下降,随温度的增加而增加。生成NO和N2的途径与NH,在CaCO3表面的覆盖度分别成一次关系和二次关系。O2组分对CaCO3作用下NH3转化的速控步影响较小,主要是促进了产物NO选择性的增加。CO2对CaCO3催化NH3氧化反应有微弱抑制作用,CO对CaCO3催化NH3氧化反应没有影响。  相似文献   

2.
采用γFe2O3纳米粉末制备选择性催化还原(selective catalysis reduction,SCR)脱硝催化剂,通过XRD、BET对催化剂进行表征,并对此催化剂的低温SCR脱硝性能在一固定床反应器中进行考察;此外通过原位红外漫反射光谱法(diffuse reflectance infrared Fourier transform spectroscopy, DRIFTS)研究了反应物在催化剂表面的吸附活化。结果表明,实验所采用的Fe2O3为纯γ相,具有较高的热稳定性和脱硝效率。DRIFTS实验研究表明,NH3主要吸附到γFe2O3催化剂表面 L 酸位形成吸附态的 NH3,在小于270℃时有部分NH3吸附到B酸位生成NH4+;O2的存在能促进吸附到L 酸位上的 NH3发生脱氢反应生成 NH2,并能够大大促进NO在催化剂表面吸附生成硝酸盐和吸附态的NO2,从而促进低温下的SCR反应。在90~360℃的温度区间内可能遵循两种反应途径,主要反应是吸附在L酸位的NH3脱氢生成NH2,然后和气态的NO反应生成N2和H2O;在低于240℃时,可能存在另外一种反应途径,中间产物 NO2(NH4+)2与NO反应生成N2、H2O和H+。  相似文献   

3.
CuO/γ-A1203和CuO-Ce02-Na20/γ-Al2O3催化吸附剂的脱硝性能   总被引:1,自引:0,他引:1  
利用改进的溶胶凝胶法制备CuO/γ-Al2O3和CuO-CeO2-Na2O/γ-Al2O3催化吸附剂颗粒,在固定床上测试其催化脱硝活性.2类催化吸附剂250~400℃范围内脱硝效率稳定在70%以上.在350℃时效率稳定在最高值.利用程序升温方法研究了2类催化剂对NH3和NO的氧化性能,发现NH3在高于400℃下急剧氧化生成N2、NO和N20,是脱硝效率下降的主要原因.CuO/γ-Al2O3催化剂能将NO氧化生成NO2,NO在催化剂上的吸附对脱硝过程有重要作用.改进的CuO-CeO2-Na2O/γ-Al2O3催化剂能使NH3在高温400℃下不被氧化,也促进了NO在催化剂表面的吸附,从而提高了催化剂脱硝效率.催化反应的机理为NO吸附在催化剂表面,氧化生成吸附态的NO2,再与吸附催化剂上的NH3反应.  相似文献   

4.
CuO/g-Al2O3和CuO-CeO2-Na2O/g-Al2O3催化吸附剂的脱硝性能   总被引:5,自引:4,他引:1  
利用改进的溶胶凝胶法制备纳米孔径的CuO/γ-Al2O3和CuO-CeO2-Na2O/γ-Al2O3催化吸附剂颗粒,在固定床上测试其催化脱硝活性。两类催化吸附剂250~400℃范围内脱硝效率稳定在70%以上。在350℃时效率稳定在最高值。利用程序升温方法研究了两类催化剂对NH3和NO的氧化性能,发现NH3在高于400℃下急剧氧化,是脱硝效率下降的主要原因。CuO/γ-Al2O3催化剂能将NO氧化生成NO2,NO2生成有利于脱硝反应的进行。NO在催化剂上的吸附对脱硝过程有重要作用。改进的CuO-CeO2-Na2O/γ-Al2O3催化剂能使NH3在高温400℃下不被氧化,也促进了NO在催化剂表面的吸附,从而提高催化剂了脱硝效率。催化剂反应的机理为NO吸附在催化剂表面,氧化生成吸附态的NO2,其再与吸附催化剂上的NH3反应。  相似文献   

5.
在半工业化流化床实验台上,进行了低热值、高灰分油页岩的燃烧实验,通过对床温以及分离器出口烟气成分(包括O2、H2O、CO2、NO和N2O)的测量,详细分析在稳定连续的燃烧状态下,床温分布以及气体产物的生成规律,床温和分离器出口O2浓度对N2O和NO排放量的影响,着重对N2O和NO的氮转化特性进行了研究。实验结果表明,随床温升高,NO和N2O排放量逐渐降低,NO和N2O随着烟气中氧浓度增加而显著增加。对N2O和NO的主要气相生成反应和分解反应进行机理分析,得出NO重要分解反应的产物之一为N2O,NO和NO2是生成N2O的关键反应物;另外,油页岩中所含CaO对N2O还原反应具有一定的催化作用。床温和氧化自由基团对反应速率有重要影响,结果表明,床温达到850℃以上运行时可使氮氧化物总转化率保持在较低水平,过量空气系数不能过高是保持N2O和NO排放量低的运行条件。  相似文献   

6.
石灰石脱硫对循环流化床中NO_x生成和排放的影响   总被引:5,自引:0,他引:5  
石灰石脱硫是循环流化床燃烧技术的优势之一。但是运行实践表明,加入石灰石对循环流化床燃烧过程中 NOX的排放有一定的负面影响,烟气中的 NOX 浓度增大了 20%~30%。为了提高脱硫效率采用较高的钙硫比时,NOX 的排放浓度也会增大。综合分析了石灰石脱硫对循环流化床中 NOX 排放的影响机理,并从化学动力学的角度对该结果进行了理论分析。认为在氧化性燃烧气氛中,石灰石产生的氧化钙能促进挥发分中的 NH3氧化生成 NO,并促进 N2O 转变成在高温下更稳定的 NO,造成烟气中 NOX浓度增高。  相似文献   

7.
不同O2浓度下NH3选择非催化还原NO的实验和模型研究   总被引:3,自引:1,他引:2  
NO的选择性非催化还原反应是燃烧过程重要的脱硝途径。文中在800~1 200 ℃,初始浓度CNO,ini=200 mmol/mol、CO2,ini=0%~10%、氨氮比CNH3/CNO=1.2的情况下,进行了NH3/NO/O2的均相流反应器的实验和化学动力学模拟研究,着重研究不同氧浓度对NO和N2O浓度变化规律的影响。实验结果表明,在微量氧气杂质(CO2"50 mmol/mol)条件下,脱硝温度更高,而脱硝率达到了95%。化学动力学模型预测的NO和N2O浓度变化规律与实验结果非常吻合:氧浓度的升高使NH3/NO的最佳反应温度下降,同时降低脱硝的效果;N2O生成浓度随着氧浓度的升高而降低,对应N2O最大浓度的温度也降低。微氧工况的N2O最大生成浓度比低氧浓度下更低,而生成温度更高。  相似文献   

8.
Mn-Fe/TiO2低温NH3选择性还原NO催化活性及其反应机制   总被引:3,自引:2,他引:3  
采用共沉淀沉积法制备了Mn-Fe/TiO2 NH3选择性催化还原(SCR)NO催化剂,80℃时即获得了92.5%的NOx转达化率,在j( H2O) = 6% 和 j( SO2) =0.01%条件下120℃时转达化率保持在95%以上。X衍射光谱(XRD)结果表明,Fe2O3与与MnO2存在相互作用,两者均匀地分散在载体TiO2表面。傅立叶转换红外(FT-IR)及原位红外(Situ IR)光谱分析得出反应机理为:Fe2O3为助催化剂,NH3主要以-NH2形式吸附在MnO2的Lewis酸中心上,与NO生成中间产物NH2NO,再分解成最终产物N2和H2O;少量以NH4+形式吸附在Br?nst酸中心上。O2能同时增加Lewis酸中心和Br?nst酸中心形成中间产物的途径。  相似文献   

9.
为了认识添加剂CO、H2和CH4对选择性非催化还原(selective non-catalytic reduction,SNCR)脱硝反应以及NH3氧化反应的影响以及添加剂存在的条件下NH3和NO的相互作用,在电加热管式反应炉上进行了实验研究。实验结果表明,无添加剂时SNCR工艺中NH3还原NO的最佳反应温度为925℃,加入CO使最佳温度降低约50℃,加入CH4或者H2使最佳温度降低约100℃。在较低的温度下NH3氧化不生成NO,当反应温度升高,NH3接近被完全消耗时,开始有NO生成。3种添加剂都使NH3发生氧化反应的最低温度降低,并使生成NO的最低温度相应的降低。除了加入H2的工况外,NO能够显著地提高NH3的氧化消耗速率。  相似文献   

10.
放电等离子体结合选择催化还原脱除NOx是一项很有前景的贫燃尾气治理技术,其预处理过程中,尾气中NO会向NO2转化。为了解重要的活性中间产物O3的作用和生成特性以及常见的烃类添加剂C2H4的作用,在介质阻挡放电等离子体反应器内进行了相关实验研究。监测N2/O2,N2/O2/NO,N2/O2/C2H4,N2/O2/NO/C2H4共4个体系下的O3产生特性,并通过N2/O2/NO和N2/O2/NO/C2H4体系的比较考察C2H4对NO转化影响的结果表明:除N2/O2体系外,其它体系中都不会产生大量的O3;C2H4不但提高了NO的转化率,还明显地抑制放电过程NO的生成。可以推断,O3作为氧化剂能促进NO向NO2的转化,C2H4添加剂可以提高NO的转化率。  相似文献   

11.
N_2O是循环流化床锅炉运行时主要的污染物之一,石灰石脱硫会影响循环流化床锅炉中N_2O的生成和排放。石灰石脱硫过程中由于CaO对N_2O的分解的催化作用;能促进HCN向NH_3转化,减少N2O的生成;同时石灰石脱硫生成的CaS可以直接还原N_2O,减少烟气中N_2O的排放浓度。此外,石灰石脱硫产生的床料对喷氨脱氮有催化作用,可使N_2O脱氮后的残留量降低三分之二左右。因而石灰石脱硫能同时降低循环流化床中SO_2和N_2O的排放。  相似文献   

12.
流化床煤燃烧过程中N2O的生成与分解机理的研究   总被引:4,自引:2,他引:4  
试验室研究表明流化床煤燃烧过程中确有大量的N2O生成,且床温、过剩氧量、煤种及粒径、添加石灰石等对N2O排放量有较大影响;NH3的氧化反应、NO在煤焦表面的还原反应以及煤焦的直接燃烧都产生N2O,但生成量比较小,流化床煤燃烧中产生的N2O主要来自挥发分中HCN的均相反应;N2O在高温下迅速分解,且H2O、煤焦、床料及备种氧化物对N2O的分解都有不同程度的催化作用;在脉冲电晕放电脱硝过程中有一定量的N2O产生,NOx初始浓度、停留时间、脉冲电压及功率对N2O生成量都有影响.  相似文献   

13.
循环流化床锅炉汞排放和吸附实验研究   总被引:2,自引:0,他引:2  
选取一台有代表性的440 t/h循环流化床锅炉,运用美国环保署推荐的安大略法,现场测定了入炉煤、底渣、飞灰和烟气中的各种汞形态浓度,获得了循环流化床锅炉汞排放特性。结果表明,循环流化床锅炉烟气中主要是颗粒汞,静电除尘装置的脱汞效率达98%,烟气汞排放浓度为0.062 mg/m3,底渣中汞小于总汞的1%。飞灰对汞强烈的吸附作用主要归因于其较高的含碳量,其次与飞灰中碳的结构形式和烟气温度有关。大幅度提高飞灰含碳量并不能提高其汞吸附量。  相似文献   

14.
以生活垃圾和煤混烧的400 t/d循环流化床垃圾焚烧锅炉为依托,对某大型生物医药公司的羊毛脂废料进行混烧的工业试验,了解混烧该废料对垃圾焚烧炉燃烧稳定性、炉膛温度、锅炉尾部常规污染物排放及飞灰含碳量的影响,以研究羊毛脂废料代替燃煤作为垃圾发电辅助燃料的可行性。试验表明,随着羊毛脂废料掺混量的增加,煤的添加量随之下降,烟气中的烟尘浓度,CO和SO2含量以及飞灰含碳量均有所下降;NO含量随掺混量的增加而增加,N2O随掺混量的增加而减少;HCl含量受掺混量影响不明显。随床温升高NO排放增加,CO排放下降,SO2和HCl浓度基本不变。试验表明循环流化床垃圾焚烧锅炉对羊毛脂废料具有良好的适应性。  相似文献   

15.
循环流化床富氧燃烧下飞灰的碳酸化   总被引:3,自引:1,他引:2  
利用热天平对2种电站循环流化床飞灰富氧燃烧条件下碳酸化的特性进行了实验研究。重点探讨了温度和CO2浓度对CaO碳酸化速率的影响规律。发现温度是CaO碳酸化的重要影响因素。在500~800 ℃内,温度升高会加速碳酸化反应,包括反应速率和最终转化率。得出:富氧燃烧下CFB中的高温受热面,将是CaO发生碳酸化并结垢的主要部位。飞灰碳酸化的实验结果表明,高的CO2浓度是会加速CaO的碳酸化反应,得到更高的转化率。但是,这种影响随着温度的降低而减弱。飞灰孔隙特性也对CaO的碳酸化反应起很重要的作用。对CaO活化能的计算,采用了分区计算的方法。2种飞灰的活化能相差不大,而且产物层控制阶段的活化能都几乎是化学反应控制阶段的2倍。  相似文献   

16.
煤和垃圾衍生燃料循环流化床混烧的试验研究   总被引:1,自引:0,他引:1  
分别在热重分析仪和0.5MW循环流化床燃烧系统上进行了煤和垃圾衍生燃料混烧实验。热重试验表明:混烧过程中,两者基本上保持各自的燃烧特性,同时垃圾衍生燃料的加入能显著提高煤粉的燃烧性能。循环流化床试验表明:相对于煤粉单独燃烧,混烧能使整个炉膛的温度分布更均匀;垃圾衍生燃料的加入降低了CO、NO、N2O、SO2的排放,但却大大增加了烟气中HCl的浓度;垃圾衍生燃料中的钙基物质能对SO2起到脱除作用,同时HCl的存在会促进钙基物质与SO2的反应;在混烧情况下,随着床层温度的升高,N、S、Cl等元素对气相污染物的转化率增加,同时,钙基物质对酸性气体SO2、HCl的脱除反应受到抑制,因此烟气中的NO、SO2、HCl等污染物浓度增加。  相似文献   

17.
燃煤循环流化床N2O及NOx排放控制试验研究   总被引:3,自引:3,他引:0  
在一直径为Φ22mm的小型燃煤循环流化床内,通过调节给煤 的位置,分级燃烧以及注入二次风的高度,向床内注入碳氢燃烧,研究N2O和NO排放控制技术。试验表明,从料腿上部给煤能显著地降低N2O排放,但会引起NO排放的增加;可采用多点给煤,调节给煤分配来保证N2O和NO排放量均能同时满足环境要求。  相似文献   

18.
大型循环流化床燃烧技术的最新进展   总被引:2,自引:1,他引:1  
介绍了循环流化床燃烧技术的最新发展:燃煤循环流化床锅炉的大型化技术(包括旋风分离器、受热面布置、空气预热器、给料装置、冷渣器、布风装置以及返料装置)、大型循环流化床锅炉低污染技术的最新发展趋势、煤粉炉的循环流化床改造技术。  相似文献   

19.
适合循环流化床(CFB)锅炉的NOx减排的技术只有SNCR工艺,CFB锅炉由于其床温低、分级燃烧NOx初始排放较其他炉型低很多。但若执行新环保标准要求,有些CFB锅炉也无法满足要求,因此需要进行脱硝,SNCR工艺主要与反应区温度、氨氮摩尔比、反应时间和混合程度等有关,主要对反应区温度和氨氮摩尔比进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号