首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
以赤铁矿为载氧体,利用流化床反应装置比较传统煤气化与化学链煤气化的不同特性,同时研究气化温度、水蒸气流量、赤铁矿/煤比(即氧/碳摩尔比)、燃料种类等反应条件对化学链气化特性的影响,并分析气化反应后载氧体基本特性的变化。结果表明,化学链气化呈现2个不同的反应阶段。在初始的挥发分析出阶段,还原性气体与载氧体、NOx的氧化还原反应对碳、氮元素的转化具有重要影响,NO和N2O均明显析出;在煤焦气化阶段,载氧体能够提高半焦反应活性、促进半焦气化和N2O生成,N2O是主要的NOx产物。赤铁矿载氧体中的Fe2O3在气化过程被还原、部分转化为Fe3O4,未发现载氧体烧结现象。  相似文献   

2.
以石墨、碳黑、烟煤/无烟煤/褐煤的脱灰半焦为碳源,通过固定床反应器以及多种表征手段探究铝基载氮体(氧化铝与氮化铝)的吸氮反应特性,并研究了TiO2和ZrO2对于载氮体释氮反应特性的影响。结果表明:碳源中较高的无序化程度有利于载氮体吸氮反应的进行;Al2O3与C的摩尔比为3∶3、吸氮反应温度为1200 ℃,是制备出适用于化学链反应制氨(CLAG)的多孔型载氮体的最佳工况;通过筛选原煤煤种发现,烟煤对于吸氮反应的促进效果最好,褐煤其次,无烟煤最差;通过优化对烟煤原煤的热解方式,能够将烟煤脱灰半焦的转化率从20%提升至39%。添加TiO2作为催化剂可明显提高氮化铝的转化率,但由于氨气的高温分解,导致氨气的产率不高;利用对氨气具有分子吸附能力的ZrO2为催化剂载体,可使得载氮体在释氮反应中的氨气生成率达到80%。  相似文献   

3.
铁酸钙载氧体(CaFe2O4/Ca2Fe2O5,简称CF)具有弱氧化性,在化学链气化过程中对CO选择性高,且可以通过碳酸化反应捕集CO2,提高合成气的低位发热量。分别在热重分析仪和固定床反应器上对基于铁酸钙载氧体的稻壳(简称R)化学链气化反应特性进行研究,分析铁酸钙载氧体与CO2的碳酸化反应特性,考察铁酸钙载氧体与稻壳的质量比(mCF/mR)、反应温度和循环反应次数对稻壳化学链气化特性的影响,并采用XRD和SEM等手段对载氧体进行表征。结果表明:当反应温度为370~840 ℃时,铁酸钙载氧体与CO2发生碳酸化反应;当反应温度为800 ℃、mCF/mR =0.73时,反应器出口合成气的CO2产率较低,低位发热量最高;经过10次化学链循环气化反应,CaFe2O4循环再生能力良好,但铁酸钙载氧体的碳酸化反应性能下降。  相似文献   

4.
固体碱催化剂氮化磷酸铝的制备及稳定性   总被引:3,自引:1,他引:2  
将磷酸铝与氨在800℃下反应,可制备不同氮含量的高比表面固体碱催化剂氮化磷酸铝,高温和高氨流量有利于得到高氮含量的样品,但高温导致磷的部分损失。FT-IR和XPS研究表明,氮化过程中有P-NH2基团和P-HN-Al基团生成,前者较后者易于生成,但随着氮含量的增加后者所占比例增加。  相似文献   

5.
建立了以CuMn2O4为载氧体、松木屑为燃料的生物质(B)化学链气化模型,对CuMn2O4载氧体和松木屑之间的化学链气化反应进行了热力学模拟。研究了气化过程中CuMn2O4载氧体的还原过程,考察了燃料反应器内载氧体与生物质摩尔比(n(O)/n(B))、反应温度、水蒸气与生物质摩尔比(n(H2O)/n(B))、CO2与生物质摩尔比(n(H2O)/n(B))等因素对气化反应的影响,分析了空气反应器内载氧体晶格氧的恢复过程。热力学分析表明:CuMn2O4在气化反应中可以提供晶格氧,有效促进松木屑的气化。CuMn2O4载氧体中的Cu和Mn组分在化学链气化反应中分别按照CuO→Cu2O→Cu和Mn2O3→Mn3O4→MnO的顺序逐级被还原,并且Mn2O3优先CuO被还原。以气化系统的碳转化率和合成气产量为主要评价指标,优化的反应条件为:n(O)/n(B)为0.16,反应温度为1273 K,n(H2O)/n(B)为0.40,n(CO2)/n(B)为0.20。在空气反应器内,CuMn2O4载氧体还原后失去的晶格氧经空气氧化后可以恢复到初始状态。  相似文献   

6.
采用混合煅烧法分别合成了K、Na、Ca、Ni、Mn、Cu修饰改性的铁矿石载氧体,利用X射线衍射(XRD)和H2程序升温还原(H2-TPR)对其理化性质进行表征,并基于热重实验考察改性载氧体与褐煤的反应性能。结果表明:由于固溶体新物相的生成,6种改性后铁矿石载氧体的反应活性均明显高于改性前;其中K改性铁矿石载氧体的反应性能优于Na、Ca改性铁矿石载氧体,Cu、Ni改性铁矿石载氧体的反应性能优于Mn改性铁矿石载氧体;铁矿石载氧体与褐煤混合质量比在5/5至6/4时反应性能最佳;K改性铁矿石载氧体与褐煤的反应性能高于Ni改性铁矿石载氧体的。  相似文献   

7.
间歇法合成氨基甲酸甲酯的研究   总被引:7,自引:2,他引:5  
对尿素与甲醇反应合成氨基甲酸甲酯 (MC)这一绿色化学工艺进行了系统地研究 ,全面考察了反应温度、反应时间及原料配比等因素对反应性能的影响。结果发现该工艺过程中尿素的转化率达 75 1% ,MC的选择性 10 0 %。MC的得率比专利报道中的得率提高了 14 6 %。  相似文献   

8.
采用溶胶-凝胶法制备了NiFe2O4载氧体,并应用于化学链制氢(CLH)反应过程,通过正交实验方法考察了原料配比、溶液pH值、凝胶温度等制备条件对载氧体物化特性和制氢性能的影响。结果表明:柠檬酸与金属离子摩尔比(RCAMI)是影响载氧体前驱体空间结构的主要因素,进而影响载氧体晶型构成、比表面积及其化学链制氢性能;溶液pH值影响柠檬酸络合物水解缩聚速率,并通过强化或抑制热解气反应阶段CH4裂解积炭来影响制氢过程H2纯度;凝胶温度提高可强化载氧体前驱体离子成核速率,但会导致生成溶胶不稳定,影响制备载氧体晶型结构及比表面积,较低凝胶温度有利于载氧体晶格氧释放。适用于化学链制氢的NiFe2O4载氧体制备条件为:RCAMI为1,pH值为7,凝胶温度为60 ℃;制得H2纯度接近100%。  相似文献   

9.
天然气在中国能源结构中的占比不断增加,其主要成分甲烷在燃烧过程中会产生大量CO和CO2。甲烷化学链燃烧技术是CO2捕集的重要技术之一,具有能量梯级利用、避免NOx产生等优点,在提高能量利用率的同时可得到高纯度CO2,有利于后续封存和转化利用,对我国“双碳”战略实施具有重要意义。影响化学链燃烧技术的主要因素是氧载体,因此氧载体的选择尤为重要。介绍了化学链燃烧技术的基本原理及特点,重点对以甲烷为燃料的化学链燃烧中的镍基、铜基、铁基、锰基、复合金属和非金属氧载体的研究进展进行了总结,发现氧载体的反应性能主要受其载氧能力、反应活性和抗烧结等性能的影响;同时对甲烷化学链燃烧技术中氧载体未来的发展前景进行了展望。  相似文献   

10.
采用柠檬酸络合法和浸渍法制备铁基载氧体CeO2-Fe2O3/LaNiO3,并将其用于化学链制氢过程中。在剂烷比2:1、进水量0.1 mL、常压的实验条件下,考察反应温度对载氧体反应性能的影响。结果表明:氢气产量随Fe负载量的增加先增大后减小,最佳负载量为15%;助剂CeO2的添加,提高了载氧体的性能,使其经过100次循环后,仍保持一定的稳定性。并且5%CeO2-15%Fe2O3/LaNiO3载氧体在固定床反应器、还原温度为800 ℃、氧化温度为800 ℃、剂烷比为2:1、进水量为0.1 mL的实验条件下连续循环100次后仍保持高活性。  相似文献   

11.
目的基于化学链技术开发一种清洁高效的生物质制氨系统。方法综合考虑系统的自热操作、经济性和碳排放要求,对系统分别进行了热力学分析、经济评价和参数优化,重点探究了化工单元和动力单元的耦合。结果以生物质为原料实现了氨气和电的联产。当生物质进料量为1 kg/s时,得到如下优化结果:①热力学性能方面,氨产率为13.82 mol/s,能量效率为0.45,燃料能源节约率为12.16%;②经济性方面,制氨成本为0.461$/kg NH_(3);③环境方面,碳排放量为0.978 kg/kg NH_(3)。结论证实了该设计理念的可行性,为后续工业化化学链制氨工艺设计和优化提供理论依据。  相似文献   

12.
为了探索聚乙烯(PE)在铁基载氧体作用下的化学链解聚机理及过程,首先利用热重分析仪研究不同升温速率下PE在Fe2O3作用下化学链解聚的反应特性;其次从化学反应动力学的角度解析PE化学链解聚过程,采用等转化率法对PE体系的活化能进行了计算和分析;最后采用反应分子动力学方法开展了PE的化学链解聚模拟,在微观原子尺度上分析和阐释了解聚的过程和机制。结果表明:化学链解聚过程中质量损失由PE和Fe2O3共同贡献,Fe2O3释放的晶格氧促进了反应的进行;PE发生化学链解聚反应后主要产物以CO2为主,而非化学链过程产物主要由一系列碳数为8~26的正构烷烃和正构烯烃组成;铁基载氧体作用的化学链过程中PE解聚的平均活化能为116.88 kJ/mol,远低于其常规热裂解的活化能。PE在化学链过程中的裂解属于典型的无规裂解,总体遵循自由基链反应理论。  相似文献   

13.
采用热力学平衡计算的方法,研究了富集重金属Cd、Pb、Zn的修复植物在热解/气化和化学链气化过程中重金属的形态分布和迁移变化规律,考察了不同气氛、温度和载氧体的影响。结果表明:铁矿石载氧体的化学链气化明显促进了3种重金属氧化物和碳酸盐的形成,对重金属的氯化物、氢化物和氢氧化物的气态挥发也具有促进作用。在以SiO2、Al2O3分别作为惰性载体的钙基(CaSO4)载氧体化学链气化中,3种重金属几乎都以硫化物生成,高温下的重金属挥发态大幅度减少,其中以SiO2作为载体时有利于PbS的形成;2种载氧体的惰性成分SiO2、Al2O3能与重金属反应生成更加稳定且不易挥发的重金属硅酸盐和铝酸盐,达到固化的效果。在水蒸气气氛下铁矿石载氧体化学链气化中,3种重金属熔融态的生成受到抑制,气态挥发物更加容易生成,其中固态PbO与PbSiO3含量明显增加;而钙基载氧体下水蒸气明显促进了3种重金属熔融态的形成,抑制了高温下重金属的气态挥发,其中Zn的铝酸盐和硅酸盐的生成得到明显促进。与热解/气化相比,化学链气化对重金属固化率有一定的优势,特别是钙基载氧体下的化学链气化。  相似文献   

14.
氢能作为二次能源在可再生能源和化石能源发展中将发挥重要的桥梁和纽带作用,但其推广应用受限于氢气储存成本高和运输效率低等因素。采用氨作为储氢载体,其储氢密度高、运输技术成熟,方便分布式现场制氢就地供应,避免氢气储运带来的困扰。氨载氢技术推广应用关键在于氨分解催化剂的发展水平。对近年来用于氨分解的Ru基催化剂、非贵金属催化剂、双金属催化剂和氮化物/碳化物催化剂研究进展进行总结,分析了各种催化剂上氨分解的反应机理以及活性金属、载体、助剂和制备方法对催化剂物化性质和催化性能的影响,指出了不同类型催化剂的优势和不足,并对其未来研究方向进行了展望。  相似文献   

15.
化学链气化技术(CLG, Chemical looping gasification)是基于化学链燃烧技术(CLC, Chemical looping combustion)发展而来的一种新颖的固体燃料气化技术。相较于常规气化技术,化学链气化技术省去了氧气制备、且不需要燃料燃烧来提供热量,具有合成气不被氮气稀释、焦油及N/S/Cl等污染物含量低、能量梯级利用等优点。以有机固体废弃物(简称有机固废)种类、载氧体(OC, Oxygen carrier)类型和反应装置为切入点,较为系统地综述了化学链气化处理有机固废技术的发展现状,围绕有机固废的气化特性及相关反应机理与系统进行了较为全面的介绍,并对其未来的研究方向进行了展望。  相似文献   

16.
采用金属氧化物催化丙烷氧化脱氢的化学链反应过程,利用晶格氧选择性燃烧生成氢,推动反应热力学平衡向生成丙烯方向移动,提高丙烯收率,降低过程热负荷;基于Aspen Plus软件对传统丙烷脱氢工艺(Oleflex)和化学链氧化脱氢工艺进行全流程模拟,对比分析两工艺的能耗;并基于流程模拟与分析,对氢气转化率和反应-再生系统设计进行了讨论。结果表明,对于化学链氧化脱氢工艺,由于不需要临氢环境,氢气与催化剂晶格氧及积炭的反应使其能耗比Oleflex工艺降低 43.01%。若采用丙烯 丙烷热泵精馏分离技术替代传统精馏技术,化学链氧化脱氢过程总能耗比Oleflex工艺可进一步降低。随着氢气转化率的提高,脱氢反应系统对下游供热的能力将逐渐提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号