首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 546 毫秒
1.
DIBK-P204体系萃取锆和铪的动力学   总被引:4,自引:2,他引:2       下载免费PDF全文
研究了DIBK-P204体系萃取锆和铪的动力学,采用恒界面池法考察搅拌速度、界面积和温度对锆和铪萃取速率的影响。结果表明,DIBK-P204体系对锆和铪萃取速率符合准一级反应,萃取反应的控制类型分别为相内反应控制和混合控制,对锆和铪萃取的表观活化能分别为-32.193kJ/mol和-18.984kJ/mol,升高温度不利于萃取反应的进行。  相似文献   

2.
采用恒界面池法研究了N263-HSCN体系萃取锆和铪的动力学,考察界面积、萃取槽搅拌速度、温度对萃取锆和铪的影响,从而确定萃取动力学类型。结果表明,当搅拌速度小于130 r/min时,萃取过程由扩散反应控制,锆铪的萃取速率常数随搅拌速度的增加而增大;当搅拌速度在130~170 r/min时,萃取过程由化学反应控制,锆和铪的萃取速率常数随搅拌速度的增加基本保持不变。随着界面积的增加和温度的提高,锆和铪的萃取速率常数均增加,其表观活化能分别为42.06 kJ/mol和31.77 kJ/mol,说明该萃取过程为相界面处的化学反应控制过程。计算出锆和铪萃取的焓变分别为39.59 kJ/mol和29.30 kJ/mol,熵变分别为-147.53 J/(mol?K)和-174.38 J/(mol?K),在298.15 K时吉布斯自由能变分别为83.57 kJ/mol和81.29 kJ/mol。  相似文献   

3.
采用恒界面池法研究了在NH_4SCN-HCl介质中DIBK-TOPO(二异丁基酮-三辛基氧化膦)体系萃取分离锆和铪的动力学性质,在一定实验条件下分别考察了搅拌速度、温度和界面积对锆铪萃取速率的影响。实验结果表明:当搅拌速度小于135 r·min-1时,锆铪的萃取速率随着搅拌速度的增加而增加,DIBK-TOPO体系对锆铪的萃取类型为扩散反应控制;当搅拌速度在135~155 r·min~(-1)范围内时,锆铪的萃取速率分别出现一段与搅拌速度无关的坪区,但锆的萃取速率常数与比界面积无关,对锆的萃取类型为相内化学反应控制类型,其表观活化能为-11.963 k J·mol~(-1),铪的萃取速率常数随着比界面积的增加而线性增加,且直线不通过坐标原点,因而对铪的萃取类型则为混合控制类型,其表观活化能为-22.406 k J·mol~(-1);当搅拌速度超过155 r·min~(-1)时,因搅拌速度过快,造成两相界面出现混乱而不稳定。升高温度不利于DIBK-TOPO体系对锆和铪的萃取。  相似文献   

4.
研究了用D296树脂从硫酸体系中吸附锆、铪,考察了吸附时间、初始料液质量浓度、温度、硫酸浓度对树脂吸附锆、铪及锆、铪分离系数的影响及吸附反应动力学。结果表明:溶液中锆离子质量浓度为120g/L、温度1℃、硫酸浓度1.6mol/L条件下,D296树脂对锆、铪的静态吸附分离系数最大,为1.19。动力学研究结果表明,D296树脂吸附锆离子的控制步骤为液膜扩散,D296树脂吸附锆离子的活化能E=158.639kJ/mol。  相似文献   

5.
DIBK协萃体系负载有机相反萃行为研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以不同酸度的盐酸和硫酸为反萃剂从DIBK-TBP体系和DIBK-P204体系负载有机相中反萃锆、铪。结果表明,对DIBK-TBP体系负载有机相,先采用酸度为2.0mol/L的盐酸水溶液对锆进行反萃,单级反萃率达85%,得到富锆液,然后用酸度为8.0mol/L的硫酸水溶液对铪进行反萃,单级反萃率达90%,得到少锆的铪液;对DIBK-P204体系负载有机相,先采用酸度为3.0mol/L的硫酸水溶液对铪进行反萃,单级反萃率达90%,得到少锆的铪液,然后采用酸度为2.0mol/L的盐酸水溶液对锆进行反萃,单级反萃率达70%,得到少铪的锆液。采用盐酸和硫酸可顺利实现对DIBK体系负载有机相中锆、铪的反萃取。  相似文献   

6.
DIBK-TBP萃取分离锆铪的热力学研究   总被引:4,自引:0,他引:4  
对二异丁基甲酮(DIBK)和TBP从HSCN介质中协同萃取锆铪的性能及热力学进行研究,采用对数函数外推法求得DIBK-TBP体系萃取反应的热力学平衡常数分别为log(K12,Zr)=4.73和log(K12,Hf)=-5.09,锆铪与SCN-形成配合物Zr(SCN)3+和Hf(SCN)3+的稳定性常数分别为1×109.86和1×10-0.80,而铪的分配比在硫氰酸盐存在时要大于锆的分配比,说明过渡金属离子锆和铪在硫氰酸盐存在时与一般金属离子与配位体形成的配合物的稳定性常数愈大,金属离子的分配比愈大的规律相矛盾,并计算出萃取反应的焓变分别为ΔHZr=-11.43 kJ.mol-1和ΔHHf=-7.80 kJ.mol-1,说明对锆铪的萃取反应为放热反应,升高温度不利于萃取反应的进行,常温下自由能变分别为ΔGZr=-26.54 kJ.mol-1和ΔGHf=28.57 kJ.mol-1,熵变分别为ΔSZr=51.54 J.(K.mol)-1和ΔSHf=-124.07 J.(K.mol)-1,说明铪离子比锆离子更易与SCN-形成配位键,从而生成中性分子Hf(SCN)4与有机相发生溶剂化作用而进入有机相中。  相似文献   

7.
采用恒界面池法研究了用P507-硫酸体系反萃取Ni(Ⅱ)的动力学,考察了搅拌速度、界面积、温度、硫酸浓度、负载镍有机相(NiA2)浓度对Ni(Ⅱ)初始反萃取速率的影响。结果表明:Ni(Ⅱ)初始反萃取速率随温度升高而升高,反萃取反应表观活化能为23.3 kJ/mol,反萃取过程受扩散和化学反应混合控制,且反应发生在相界面处,硫酸反萃取Ni(Ⅱ)的动力学速率方程为:r0=K[NiA2]1.01[H+]1.83。  相似文献   

8.
难选高硅氧化锌矿碱浸出动力学   总被引:1,自引:1,他引:0  
研究了氢氧化钠处理难选高硅氧化锌矿的浸出动力学,考察了搅拌强度、浸出反应温度、氢氧化钠初始浓度对锌的浸出速率的影响。利用等浸出率法来确定其表观活化能和反应级数,得到表观活化能E=45.7 kJ/mol,属于化学反应控制;其反应级数K=1.4。实验结果表明,提高反应温度可显著提高锌的浸出率,而增大搅拌强度却对锌的浸出率基本无影响。  相似文献   

9.
DIBK-P204体系萃取锆铪的热力学研究   总被引:3,自引:0,他引:3  
以二异丁基甲酮(DIBK)为萃取剂,二(2-乙基己基)磷酸酯(P204)为改质剂,利用对数函数外推法对DIBK-P204体系从HSCN介质中萃取锆和铪的热力学进行研究,结果表明:锆铪与SCN-所形成配合物的一级稳定性常数分别为1×1010.07和1×10-0.12,DIBK-P204体系萃取锆和铪的热力学平衡常数分别为lg(K12,Zr)=5.00和lg(K12,Hf)=-4.69,焓变分别为ΔHZr=-13.76 kJ·mol-1和ΔHHf=-13.05 kJ·mol-1,说明对锆铪的萃取反应为放热反应,升高温度不利于萃取反应的进行,并计算出常温下萃取反应的自由能变分别为ΔGZr=-28.06 kJ·mol-1和ΔGHf=26.32 kJ·mol-1,熵变分别为ΔSZr=48.78 J·(K.mol)-1和ΔSHf=-134.30 J·(K.mol)-1。  相似文献   

10.
采用恒界面池法研究了高效萃取剂AD100在硫酸盐体系中萃取Cu(Ⅱ)的动力学,考察了搅拌速度、萃取温度、相界面面积、萃取剂浓度、Cu(Ⅱ)浓度对萃取速率的影响。结果表明,Cu(Ⅱ)的萃取速率随着搅拌速度的增加而加快,当搅拌速度超过110r/min后,萃取速率不再受其影响;萃取速率随着萃取温度和相界面面积的增大而增大。AD100萃取Cu(Ⅱ)的活化能为21.45kJ/mol,萃取过程受界面化学反应控制。Cu(Ⅱ)的萃取速率随AD100和Cu(Ⅱ)浓度的增大而增大。在相界面面积为20.17cm2、反应温度为20℃的条件下,AD100萃取Cu(Ⅱ)的界面反应动力学方程为:r=4.81×10-2[AD100]1.06[Cu2+]0.33。  相似文献   

11.
Magnesium bicarbonate solution is considered as an environmentally friendly extractant saponification agent for the solvent extraction of rare earth elements due to its advantage of minimum water pollution.In order to reveal the extraction regularity, optimize production-process and guide the use of this new extraction system, the extraction of Nd(Ⅲ) in chloride medium with HEH/EHP saponified by magnesium bicarbonate solution was investigated with the self-designed constant interfacial area cell. Besides, the effects of stirring rate, temperature, specific interfacial area and concentration of Mg-HEH/EHP on the extraction rate of Nd(Ⅲ) were systematically investigated. Results show that, the rate of extraction is governed by both diffusion and chemical reaction, and the extraction reaction takes place at the interface. The apparent activation energy of the extraction reaction is 16.88 kJ/mol. The corresponding rate equation is deduced. The mechanisms and rate-determining step are speculated based on interfacial reaction models, which is consistent with the experimental results.  相似文献   

12.
云南元江镍红土矿加压酸浸动力学   总被引:3,自引:1,他引:2  
用加压硫酸浸出法处理云南元江高铁低镁型镍红土矿,考察了浸出过程的动力学及控制步骤。研究结果表明,镍钴浸出过程可用收缩未反应核模型来描述,镍钴浸出率符合动力学方程1-(1-x)1/3~k.t,其浸出反应的表观活化能分别为41.41 kJ/mol和43.70 kJ/mol,界面化学反应为控制步骤。  相似文献   

13.
探究以核桃壳为还原剂硫酸浸出氧化锰矿过程的动力学。考察了搅拌速度、反应温度、硫酸浓度、反应时间以及核桃壳用量对锰浸出率的影响。结果表明,锰的浸出率随着搅拌速度、硫酸浓度、核桃壳用量的增大和温度的升高而增大。浸出前60 min浸出率的增长速度较快。在反应温度为369 K、硫酸浓度3.5 mol/L、核桃壳加入量40 g/L、反应时间2.5 h、转速200 r/min时,锰浸出率达93.18%。浸出过程属于化学反应控制,对应的活化能为45.5 kJ/mol,硫酸浓度和核桃壳用量的反应级数分别为0.897、0.2。  相似文献   

14.
低浓度碱介质中钢渣碳酸化反应特征   总被引:1,自引:0,他引:1  
 钢渣碳酸化是一种CO2矿化利用的有效方法。通过添加低浓度碱,可有效提高钢渣碳酸化转化效率。围绕低浓度碱介质中钢渣碳酸化过程,系统研究了搅拌转速、低浓度碱浓度、反应温度等工艺条件对钢渣碳酸化转化效率的影响。在搅拌转速为450 r/min,碱浓度为20 g/L,反应温度为70 ℃等优化工艺条件下可实现钢渣碳酸化转化效率为49.72%,是传统水介质体系的1.8倍以上,且反应条件温和,介质可循环利用。进一步开展了钢渣碳酸化反应动力学研究,结果表明钢渣碳酸化反应为内扩散控制,计算得到表观活化能为22.48 kJ·mol-1。  相似文献   

15.
研究了含锌废渣及贫杂锌矿在碱浸过程中的动力学。结果表明,含锌废渣(ZnO)在碱溶液中的浸出过程符合关系式1-(1-η)13=kt,表观活化能为49.22 kJ/mol,说明浸出过程受化学控制;贫杂锌矿(ZnCO3)在碱溶液中的浸出过程可分为两段,在开始段时间内,1-(2/3)η-(1-η)2/3与浸出时间呈直线关系,活化能为19.95 kJ/mol;而在6 min以后则是1-(1-η)13与浸出时间呈直线关系,活化能为46.54 kJ/mol。说明在开始时间段内是受内扩散控制,而随后的浸出过程是受化学反应控制。  相似文献   

16.
在HSC6.0计算软件热力学分析的基础上,采用正交实验确定了高磷鲕状赤铁矿酸浸脱磷保铁的最佳工艺,并以最佳工艺为基础进行了酸浸过程中脱磷和铁损反应的动力学研究。热力学分析表明H_2SO_4为最佳酸浸用酸。正交实验得出最佳酸浸条件为:H+浓度为0.5mol/L的H_2SO_4溶液、酸浸时间40min、温度298K、液固比200mL∶14g、搅拌速度100r/min。在该条件下,脱磷率可达98.89%,铁损率仅为0.51%。通过SEM-EDS对酸浸前后高磷鮞状赤铁块矿试样分析表征得出:经H_2SO_4浸出后,磷灰石基本完全溶解,含铁矿相未发生明显反应。动力学分析显示:优化条件下,酸浸脱磷反应在298~328K内符合收缩未反应核模型,浸出过程主要受内扩散控制,表观活化能为11.24kJ/mol;铁损反应在298~328K内遵循收缩未反应核模型,浸出过程主要受化学反应控制,表观活化能为42.24kJ/mol。  相似文献   

17.
采用MIBK作为萃取剂,在盐酸体系下,对含铪合金渣中的铪进行萃取分离试验,主要考察合金渣中含量较高的锆、钛、铬和铪在萃前液不同氢离子浓度、NH4SCN浓度、有机相HSCN浓度及相比下的分离性能。结果表明,铪和锆钛分离难度较大、和铬分离较易,铪的最优分离条件为:萃前液氢离子浓度0.96mol/L、萃前液NH4SCN浓度2.56mol/L、有机相HSCN浓度2.73 mol/L、相比1。在最优条件下,铪和锆的相对分离系数为6.63,铪的分配比为1.79,对于锆含量较低的合金渣,可以有效提升锆铪分离效率,钛最好于萃取分离前进行分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号