首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
研究了用化学共沉淀法和离子交换法合成己二酸改性磁性水滑石,并采用FT-IR、TGA和VSM等手段对其结构、热稳定性和磁性能进行表征。考察了溶液pH、接触时间、铀初始质量浓度等对己二酸改性磁性水滑石吸附铀的影响。结果表明,己二酸改性磁性水滑石对铀有较好的吸附效果,吸附平衡容量达332mg/g干,对低质量浓度(10mg/L)铀的吸附率大于93%,所吸附的铀可通过磁分离技术加以回收。利用己二酸改性磁性水滑石处理含铀溶液有一定应用前景。  相似文献   

2.
改性活性炭处理含氰废水的试验研究   总被引:4,自引:0,他引:4  
牟淑杰 《黄金》2009,30(3):56-58
采用阳离子絮凝剂聚二甲基二烯丙基氯化铵对活性炭进行改性,并通过试验研究了改性活性炭处理模拟含氰废水。试验结果表明,废水PH值为8,改性活性炭用量为12g/L,吸附时间为5h,反应温度为20℃,CN^-的去除率可达到99%以上,处理后废水中CN^-的质量浓度低于0.5mg/L。该吸附反应符合Langmuir等温方程。该方法具有处理含氰废水效果好、操作简单等优点。  相似文献   

3.
研究了以NaOH为改性剂浸渍改性活性炭,考察了改性活性炭吸附烟气中CO_2的性能,确定了NaOH浸渍改性活性炭的最佳条件。结果表明:未改性活性炭对烟气中CO_2的吸附量不超过1.0 mmol/g,而改性后活性炭对CO_2吸附量达3.50 mmol/g;在改性剂用量140 mL、改性温度70℃、改性时间6 h、干燥时间4 h条件下对活性炭进行改性,所得改性活性炭对CO_2的吸附效果最好,吸附量是未改性时的3.9倍。  相似文献   

4.
马红周  杨明  兰新哲  王耀宁 《黄金》2007,28(9):56-58
研究了活性炭吸附法对酸化后的含氰废水处理效果.通过试验,探讨了吸附时间、添加剂的加入量和鼓风量对活性炭吸附氰化物效果的影响.试验结果表明,这些因素都可以促进活性炭对氰化物的吸附;经活性炭吸附后,废水中CN-的质量浓度<0.5mg/L、Cu2 的质量浓度<0.4mg/L,可以达到排放标准.在吸附过程中,选择CaCl2作为促进吸附的添加剂;添加剂用量为0.3g/L时,可有效地促进活性炭对CN-和Cu2 的吸附.  相似文献   

5.
无机盐改性麦糟在低浓度含砷水中的吸附性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
含砷废水的排放已成为国内外饮用水源最大的安全隐患之一.采用无机盐改性麦糟作为吸附剂,对低浓度含砷水进行吸附试验研究.确定最佳改性条件为1.5 mol/L NaCl 与麦糟按1 L∶100 g 混合均匀,室温下改性12 h.在不调节pH 值(溶液pH 值为7),改性麦糟投加量5 g/L 条件下,初始浓度为0.1 mg/L 的含砷水可在60 min 达到吸附平衡,且最终使出水满足《生活饮用水卫生标准》(GB5749-2006)中砷含量(0.01 mg/L)要求.考察了溶液共存阴离子对改性麦糟吸附含砷水的影响,并验证了NaCl 改性麦糟处理含砷水源地水的效果.   相似文献   

6.
活性炭负载离子改性及其去除水中氰离子的研究   总被引:4,自引:2,他引:2  
张明祖  刘建 《黄金》2008,29(6):51-54
文中提出了一种基于配位交换吸附去除水中氰离子的方法,并进行了试验研究。试验以活性炭为载体,通过对Cu2 ,Ni2 的吸附及负载,实现对活性炭改性;经改性后的活性炭,对CN-有良好的吸附性能。试验结果表明,用改性后的活性炭处理水中的氰离子,能将水中CN-的质量浓度降低至国家排放标准0.5mg/L以下;测得改性活性炭对CN-的饱和吸附量可达到22mg/g左右,从而获得了一种新的固液分离除氰材料。改性活性炭对CN-的吸附是基于CN-与Cu2 ,Ni2 的配位性质,因此不受水溶液中其他共存离子影响,具有较高的选择吸附性。  相似文献   

7.
未经处理或处理不完全的含氮污染物的任意排放给环境造成极大的危害,而采用传统方法处理中低浓度氨氮废水效率不高.文中以某污水处理厂的剩余活性污泥为基质,其表面经一定浓度的氯化铁溶液改性2 h后用作吸附剂处理中低浓度氨氮废水.实验结果表明:室温时经0.15 mol/L的氯化铁溶液改性的涂铁污泥用量5 g/L,pH值为9,反应40 min即可达到氨氮去除率95%以上,且该吸附反应符合拟二级速率方程.将此工艺条件用于处理氨氮浓度为102.68 mg/L、COD为362 mg/L的实际工业废水,处理后滤液中氨氮浓度9.2 mg/L、COD 83 mg/L,达到《污水综合排放标准(GB8978-1996)》一级标准(NH4+浓度<15 mg/L和COD<100 mg/L).  相似文献   

8.
含铜废水的吸附处理研究   总被引:7,自引:0,他引:7  
胡巧开 《冶金能源》2005,24(2):59-62
探讨了用热改性膨润土处理含Cu^2 废水的工艺条件,并与粉煤灰和活性炭进行了比较。实验结果表明:当Cu^2 的初始浓度不大于100mg/L时,过200目的热改性膨润土的用量为5g/L、pH=7、搅拌速度为300r/min、吸附时间30min,热改性膨润土对Cu^2 的去除率达99.5%以上。  相似文献   

9.
水蒸气高温改性兰炭用于深度处理焦化废水,考察了吸附时间、pH值、吸附剂用量、温度等因素对处理效果的影响。结果表明,在室温25℃、废水pH值为4、投加量20g/L条件下吸附120min后,焦化废水深度处理过程COD去除率在50%以上。Freundlich吸附等温线表明,改性兰炭对焦化废水出水进行深度处理时吸附性能较好。  相似文献   

10.
常会  范文娟 《冶金分析》2019,39(11):63-68
使用改性hummers法制备出氧化石墨烯(GO),通过水热法在GO上生长磁性CoFe2O4,再使用聚乙烯亚胺(PEI)进行氨基改性,制备出聚乙烯亚胺氨基化磁性氧化石墨烯(PEI-MGO)。使用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对PEI-MGO的结构和微观形貌进行表征。结果表明:纳米级尖晶石相CoFe2O4均匀分散于GO上,且氨基改性成功。探讨了PEI-MGO对水体中活性艳红X-3B的吸附性能。结果表明:在活性艳红X-3B初始质量浓度为150mg/L、体积为100mL、吸附剂质量为0.04g、pH值为1、吸附时间为60min时达到平衡,平衡吸附量为361.15mg/g。PEI-MGO对活性艳红X-3B的饱和吸附量为470.58mg/g。磁分离和磁回收研究表明,PEI-MGO能快速从水体中分离,回收率为98.6%。  相似文献   

11.
以改性焦炭作为吸附剂,对焦化废水进行深度处理.试验不同因素对去除废水中COD的影响.试验结果表明,不需要其他工艺辅助,不调节pH及水体温度,在吸附时间为60 min、磁力搅拌器转速为300 r/min、每200 mL废水用13 g改性焦炭的条件下,废水中COD质量浓度可从93 mg/L降低至48mg/L左右,能满足循环...  相似文献   

12.
活性炭吸附法去除冶炼废水COD的研究   总被引:1,自引:0,他引:1  
采用活性炭吸附法对株冶冶炼废水进行了COD去除研究,考察了pH值、反应时间、活性炭用量、反应温度对去除率的影响。结果表明:采用粉末活性炭为吸附剂,当pH值为8.5,搅拌时间为0.5h,活性炭用量为0.25g/L,温度为25℃时,COD去除率达到64.87%,出水COD约为20mg/L。  相似文献   

13.
采用聚合硫酸铁(PFS)法处理镍钼矿酸浸液萃钼余液中的重金属离子和化学耗氧量(COD),考察双氧水用量、PFS用量、搅拌时间、pH对余液中Zn~(2+)、Pb~(2+)、Ni~(2+)及COD含量的影响。结果表明,在双氧水用量20 mL/L、PFS用量60 mg/L、搅拌时间90 min、pH 11.0的条件下,COD可降至500 mg/L以下,去除率高达89%,重金属离子均达到GB 8978-1996污水综合排放一级标准。  相似文献   

14.
正交方法研究改性累托石吸附处理含氰废水   总被引:1,自引:0,他引:1  
邓书平 《黄金》2010,31(3):53-55
采用硫酸和高分子絮凝剂聚二甲基二烯丙基氯化铵对累托石进行改性,通过正交方法研究改性累托石吸附处理含氰废水。试验结果表明,改性累托石用量为3.5 g/L,废水pH值为4.5,吸附时间75 min,氰化物的去除率可达98.9%。改性累托石对氰化物的吸附符合Langmuir模型。  相似文献   

15.
采用浸渍焙烧法制备了Fe-Ce/活性氧化铝、活性炭、陶粒、沸石和高岭土催化剂,并用于催化臭氧降解钨湿法冶炼废水。在单因素试验的基础上,以COD去除率为考核指标,考察了催化剂焙烧温度、臭氧投加量、废水pH、催化剂投加量、反应时间和反应次数的效果。试验表明,在臭氧投加量均为700 mg/L下,在最优条件下COD去除率分别为80.9%、74.2%、69.5%、85.9%和66.6%。以该物质为催化剂载体,COD去除率从大到小依次排列为:沸石、活性氧化铝、活性炭、陶粒、高岭土,综合考虑经济成本和COD去除率来比较从优到次依次排列为:活性氧化铝、沸石、活性炭、陶粒、高岭土。  相似文献   

16.
电解锰废水中Cr~(6+)、Mn~(2+)的去除方法研究   总被引:1,自引:0,他引:1  
通过实验研究了还原沉淀-晶种曝气组合工艺去除电解锰废水中Cr6+和Mn2+,并探索了最佳工艺条件.首先以Na2SO3做还原剂将Cr6+转化为Cr3+后再通过化学沉淀法除去,然后采用加入MnO2做晶种曝气氧化去除废水中的Mn2+.结果表明:当Na2SO3投加量为0.5 g/L,还原反应pH值为4,还原反应时间6 min,Cr6+可完全转化为Cr3+.Cr3+在pH值为8时沉淀最完全,出水总铬浓度可从100 mg/L降到0.5 mg/L以下.除铬后,当MnO2投加量为25 g/L,废水pH值为9,曝气10 min,出水Mn2+浓度可从1 000 mg/L降到0.4 mg/L以下.通过以上处理出水总铬和总锰均达到我国《污水综合排放标准(GB8978-1996)》一级要求.  相似文献   

17.
通过实验研究了还原沉淀-晶种曝气组合工艺去除电解锰废水中Cr6+和Mn2+,并探索了最佳工艺条件.首先以Na2SO3做还原剂将Cr6+转化为Cr3+后再通过化学沉淀法除去,然后采用加入MnO2做晶种曝气氧化去除废水中的Mn2+.结果表明:当Na2SO3投加量为0.5 g/L,还原反应pH值为4,还原反应时间6 min,Cr6+可完全转化为Cr3+.Cr3+在pH值为8时沉淀最完全,出水总铬浓度可从100 mg/L降到0.5 mg/L以下.除铬后,当MnO2投加量为25 g/L,废水pH值为9,曝气10 min,出水Mn2+浓度可从1 000 mg/L降到0.4 mg/L以下.通过以上处理出水总铬和总锰均达到我国《污水综合排放标准(GB8978-1996)》一级要求.   相似文献   

18.
Carbon tetrachloride (CT) in a synthetic wastewater was effectively degraded in a 2?l upflow anaerobic sludge blanket reactor during the granulation process by increasing the chemical oxygen demand (COD) and CT loadings. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to mass (F/M) ratio, and specific methanogenic activity (SMA) were also detected during granulation. Over 97% of CT was removed at 37°C, at a COD loading rate of 10?g/L?day. Chemical oxygen demand and CT removal efficiencies of 92 and 88% were achieved when the reactor was operating at CT and COD loading rates of 17.5?mg/L?day and 12.5?g/L?day, respectively. This corresponds to an hydraulic retention time of 0.28?day and an F/M ratio of 0.57?g?COD/g?volatile?suspended?solids?(VSS)?day. In 4?weeks, the seed sludge developed the CT degrading capability that was not very sensitive to shocks. The granular sludge cultivated had a maximum diameter of 2.5?mm and SMA of 1.64?g?COD/g?VSS?day. Glucose biodegradation by CT acclimated anaerobic granules was expressed with competitive inhibition. However the competitive inhibition was not significant since the competitive inhibition coefficient (Ki) was as high as 18.72?mg/L. Kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient), and b (decay coefficient) were determined as 0.6/day, 1.1?mg/L, 0.23?g?VSS/g glucose-COD, and 0.01/day, respectively, based on growth substrate glucose–COD during CT biotransformation. The CT was treated via biodegradation and this contributed to 89% of the total removal. The removal contributions from biomass adsorption, abiotic transformation, and volatilization were negligible. Adsorption and volatilization accounted for only 0.8 and 0.5% of the total removal, respectively.  相似文献   

19.
钼铼生产废水具有高氨氮、含油和重金属的特点,采用"气浮-芬顿法-沉淀-脱氨-电絮凝"工艺处理钼铼生产废水,原水氨氮20~40g/L,COD 500~1 000 mg/L,出水氨氮<10 mg/L,COD<100mg/L,重金属<0.5mg/L,达到GB 8978-1996一级排放标准。本工程具有处理效果好和运行稳定的优势,具有较好的社会与环境效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号