首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
采用水热法在阳极氧化的TiO_2纳米管阵列上修饰MnO_2,制备MnO_2/TiO_2复合物电极,并组装为对称超级电容器。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:MnO_2以纳米颗粒形态均匀分布在TiO_2纳米管阵列管口和内部,充放电电流密度在1A/g下时,比电容为429.3F/g,经5 000次循环后的电容保持率为82.4%。MnO_2/TiO_2对称超级电容器在电流密度5A/g下充放电比电容为39.9F/g,经5 000次循环后的电容保持率为91.5%;功率密度400 W/kg下,能量密度为18.98 Wh/kg。阳极氧化的TiO_2纳米管阵列既可做MnO_2的载体,基底Ti又可做集流体,减轻了超级电容器的质量,为制备超级电容器提供了一种思路。  相似文献   

2.
目的以甲壳素纳米纤维、多壁碳纳米管、碳布、吡咯为原料,制备柔性超级电容器复合电极薄膜。方法先利用化学氧化法提高碳布的表面粗糙度,再通过真空抽滤在碳布表面附着甲壳素纳米纤维和多壁碳纳米管,以增加碳布的负载空间,最后通过原位聚合吡咯来增加复合薄膜的电容性能。同时制备氧化碳布/聚吡咯复合薄膜作为对照组。结果制成的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合薄膜在扫描速率为5 mV/s时,质量比电容达到了307 F/g,是氧化碳布/聚吡咯质量比电容(175 F/g)的1.75倍;在电流密度为2 A/g时,经过2000次循环后电容保留率为72.3%,库仑效率为73.8%。结论制备的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯薄膜具有较高的比电容和循环稳定性,可以作为超级电容器电极材料应用于物联网行业的有源储能包装。  相似文献   

3.
颜冬仙  樊新 《材料导报》2023,(18):22-27
超级电容器因其能量密度大、功率密度高等优异性能而被认为是理想的储能器件,能在一定程度上有效解决能源问题。电极材料决定性影响着超级电容器的性能,而具有高理论比电容的过渡金属是人们的研究热点。镍钴双金属氧化物储能效力高,但是内阻大,导致倍率性能差。基于此,本工作利用简单的水热法成功合成rGO@NixCoy纳米复合材料,通过不断调控镍钴元素的相对比例来调整物质的形貌结构,找到其最佳比例。在所有纳米复合材料中,rGO/NiCo纳米复合材料在0.5 A/g下表现出600 F/g的优异比电容值,其组装的rGO/NiCo∥rGO柔性器件在1 A/g下的比电容为418.2 F/g,能量密度为98 Wh/kg,功率密度为1 300 W/kg,且在8 000次充放电循环后仍保持93%的比电容,同时固态柔性器件可以有效地在广泛的电压窗口中操作,优异的电化学性能预示了其在柔性超级电容器器件中的应用前景。  相似文献   

4.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了Py-SH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

5.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了PySH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

6.
以硝酸镍、尿素及氟化铵为原料,采用水热法在炭布(CC)表面生长β-Ni(OH)_2纳米片。XPS结果表明酸处理后的炭布(ACC)上含有更多活性官能团,有利于β-Ni(OH)_2纳米片在炭布上的生长。XRD结果表明,炭布表面的β-Ni(OH)_2纳米片结晶良好,晶格完整。通过分时采样的SEM照片,研究炭布表面β-Ni(OH)_2的生长过程。反应初始阶段,炭布表面生长微小β-Ni(OH)_2颗粒或片。随着反应进行,炭布表面的纳米片不断团聚生长。当反应时间为6 h时,炭布表面均匀布满β-Ni(OH)_2纳米片,直径约为1μm,厚度约为10 nm。随着反应的继续进行,β-Ni(OH)_2纳米片堆叠。反应时间为12 h时,炭布表面均匀分布多层的β-Ni(OH)_2纳米片,厚度约为200 nm。反应时间为6 h时所得样品具有优异的超级电容器性能,电流密度为1 A·g~(-1)时,比电容为815.67 F·g~(-1)。循环次数达到4 000次时,比电容仍保留98.1%。  相似文献   

7.
碳基材料(如碳纳米管、石墨烯和介孔碳)是典型的电化学双电层超级电容器电极材料。虽然碳基材料表现出优异的电化学稳定性能,但其比电容较低。因此,常用赝电容材料与其复合。赝电容材料中,二氧化锰(MnO_2)因理论比电容高、价格低、储量丰富和环境友好等特点,被广泛应用于超级电容器中。然而,MnO_2导电性能差、在循环充放电过程中相转变严重和体积变化大等问题,导致其在实际应用中常表现出较低的比电容。为了研发高性能MnO_2/碳基超级电容器,必须深入研究其储能机理。因此,本文分析和总结了4种MnO_2材料的电荷储能机理:电解液阳离子的表面吸附机理、电解液阳离子的嵌入-脱出机理、隧道储能机理和电荷补偿机理。虽然电荷补偿机理是涉及阳离子预先插入的MnO_2(A_xMnO_2)材料,但4种机理的本质都是Mn~(3+)和Mn~(4+)之间的相互转化,且由于储能过程复杂,MnO_2基超级电容器储能过程常是几种机理共同作用的结果。最后,对高性能MnO_2/碳基超级电容器的前景进行了展望,对其面临的主要挑战和发展策略进行了总结。  相似文献   

8.
以硫酸锰(MnSO_4)和高锰酸钾(KMnO_4)为反应物,以碳纳米管(CNTs)为载体,通过液相合成法制备纳米MnO_2/CNTs复合材料,将其按一定比例与活性炭均匀复合制备AC/MnO_2/CNTs三元复合电极并组装成电容器。采用X射线衍射(XRD)和透射电镜(TEM)对复合材料成分、晶型、形貌进行表征,并通过恒流充放电、循环伏安和交流阻抗测试研究AC/MnO_2/CNTs复合电容器电化学性能。结果表明:复合电容器在1mol/L(NH_4)_2SO_4电解液中具有良好的充放电可逆性,其比电容随MnO_2含量增加呈现先增大后减小的趋势,当MnO_2/CNTs含量为30%时,电容值达到最高,为528F/g。  相似文献   

9.
通过水热路径引入表面活性剂十二烷基磺酸钠在泡沫镍上成功合成出比表面积较大、超薄多孔的MgCo2O4纳米线。研究表明,MgCo2O4纳米线展示出紧密交织透明的网格状结构且在5 A/g的电流密度下,比电容高达2128 F/g。在40 A/g的情况下循环6000周次后,比电容保持了原始容量的98.4%。将该纳米线和活性炭分别作为正极和负极组装成非对称超级电容器,其比电容可达65.32 F/g且在功率密度为338.95 W/kg下能量密度可达20.41 Wh/kg。上述结果表明该非对称超级电容器是一个较好的储能装置,在实际应用中拥有良好的潜力。  相似文献   

10.
采用模板聚合同步活化法可控制备了氮/氧共掺杂的多孔碳纳米带(PCNR)材料。通过SEM,TEM,FTIR,Raman,XRD,BET和XPS对PCNR的形貌和结构进行了表征,结果表明:PCNR呈三维连通的带状结构,碳纳米带表面呈多孔状;800℃活化制备的PCNR800样品比表面积为2342 m~2/g、氮含量为10.75%,氧含量为13.90%。PCNR800为电极活性物质组装的超级电容器,其具有优异的储能特性。在电流密度为1.0 A/g时,比电容为58.8 F/g;在功率密度为1.5 kW/kg时,能量密度为73.3 Wh/kg;5000次恒流充放电循环后,比电容为初始比电容的96.5%,库仑效率保持99%以上。  相似文献   

11.
采用水热法先合成MnFe2O4(MFO), 然后通过与PH3反应制备了磷酸根离子掺杂的MnFe2O4(PMFO), 以提高它的电化学性能。研究结果表明, 磷酸根掺杂不仅增大了MnFe2O4的比表面积, 也增加了材料的电导性。在1 A/g电流密度下, PMFO比容量为750 F/g, 与MFO相比, 比电容提高了近70%, 同时循环稳定性也得到了极大改善。以PMFO为正极、活性碳为负极的非对称超级电容器(ASCs), 在功率密度为2.7 kW/kg时, 能量密度达到168.8 Wh/kg。因此, PMFO是有极大应用前景的超级电容器电极材料。  相似文献   

12.
以高锰酸钾与乙酸乙酯为起始原料,通过氧化还原反应在85℃温和条件下制得二氧化锰(MnO_2)纳米颗粒,并通过在反应体系中加入碳(C)材料合成了MnO_2/C复合电极材料。实验结果表明,MnO_2在1A/g电流密度下,比电容为212F/g;而添加了2.5mL碳材料的MnO_2/C复合电极材料的比电容达到358F/g;当电流密度增加到4A/g时,MnO_2/C复合电极材料的比电容仍达到234F/g。  相似文献   

13.
为得到高电容特性的超级电容器电极材料,以廉价的可溶性淀粉为碳源采用配位-热解法制备了纳米级多孔石墨化碳电极材料。分别利用透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)和N2吸附-脱附(BET)等测试手段对材料的微观结构进行表征,结果表明,合成材料具有较大的比表面积(1 187m2/g)和高的石墨化程度。并对合成材料进行了电化学性能测试,测试结果说明,该材料展示了优异的电容特性,在1A/g时,其电容高达249F/g,5 000次循环后,其比电容仍为初始电容的99.97%。当以此材料为电极组装成电容器器件时,在功率密度为10 500 W/kg下其能量密度仍为46.79 Wh/kg。因此,这种方法制备的纳米级多孔石墨化碳是一种有潜力的超电材料。  相似文献   

14.
以纸纤维(PF)为基体,晶须状碳纳米管(WCNT)和活性炭(AC)为功能添加物,采用真空抽滤法制成PF/WCNT/AC三元无金属集流体复合电极。利用扫描电子显微镜(SEM)、X射线衍射(XRD)光谱仪、拉曼(Raman)光谱仪对其进行表征和分析,采用两电极测试体系对组装的超级电容器性能进行测试。结果表明,与涂布法所得的铝箔集流体(Al/WCNT/AC)电极相比,由PF/WCNT/AC三元复合电极组装的超级电容器比电容大幅提高,并展现出良好的充放电性能。在1mV/s的扫描速率下比电容达325F/g,几乎是Al/WCNT/AC超级电容器(108.7F/g)的3倍。PF/WCNT/AC超级电容器在0.4A/g电流密度下的比电容为95F/g,在3.2A/g电流密度下的比能量与比功率分别为36.76 Wh/kg、5.52kW/kg。  相似文献   

15.
为提高多孔碳球作为超级电容器电极材料在电解液中的离子迁移速率,通过水热法设计制备了以碳球为外壳,金纳米颗粒为核心的核壳结构复合材料(CS-Au)。之后通过KOH活化,制备的样品(PCS-Au)比表面积可达到962.48m2/g。结果表明:在0.5A/g的电流密度下,PCS-Au表现出225F/g的比容量,相较于纯多孔碳球(PCS)比容量提高了28.5%。使用螺旋季铵四氟硼酸盐和乙腈混合溶液(CF4301)作为电解液,组装成纽扣式对称型超级电容器后,PCS-Au在功率密度为1000W/kg的情况下能量密度为27.63Wh/kg。并且在1A/g电流密度下,经过20000圈循环稳定性测试后容量保持率为104.76%,性能无衰减,展现出很好的循环稳定性。精心设计的核壳结构与较大的比表面积,优异的导电性及丰富的孔结构降低了材料电阻并可以容纳更多的电解液,导致Au纳米颗粒@多孔碳球是一种极具应用价值的超级电容器电极材料。  相似文献   

16.
以氧化石墨烯溶液和硝酸镍为原料,采用一步水热法制备了Ni(OH)_2/还原氧化石墨烯(Ni(OH)_2@RGO)复合材料。在Ni(OH)_2/还原氧化石墨烯的研究中,两组分间的配比对复合物的形貌和电化学活性具有显著的影响。在最佳配比下(RGO含量26.7%),Ni(OH)2以纳米带形式担载于石墨烯片相互搭接成的三维网络结构中,从而可暴露更多的活性位点和有效比表面积,利于展现更好的电化学性能。该复合材料用作超级电容器电极材料时,展现了高的比电容(在1 A·g~(-1)下的比电容高达1 804 F·g~(-1)),良好的倍率性能(在25 A·g~(-1)下比电容保持率仍在46%以上),以及优异的循环稳定性(在2 A·g~(-1)下循环2 000次的电容保持率为90.3%)。  相似文献   

17.
通过一步水热法制备组氨酸功能化碳点/石墨烯气凝胶(His-CDs/GA)。该材料具有独特的三维多孔结构、丰富的含氮和含氧官能团, 有利于电解液离子的快速扩散和提供更多的活性位点。当GO与His-CDs的质量比为2 : 1时, His-CDs/GA-2在1 A·g -1电流密度下比电容达到304 F·g - 1, 比GA(172 F·g -1)提高了76.7%; 当电流密度从1 A·g -1增加到50 A·g -1, 其比电容保持率为71.4%; 在电流密度10 A·g -1下, 循环充放电30000次后, 比电容仍保留93.5%。由His-CDs/GA组装的对称超级电容器展现出高能量密度(在功率密度为250 W/kg时, 能量密度达到10.14 Wh/kg)和良好的循环性能(在5 A·g -1下循环充放电20000次后, 比电容保持率为88.4%)。结果表明, His-CDs/GA是一种应用前景广阔的超级电容器电极材料。  相似文献   

18.
通过水热反应和高温焙烧方法制备了负载RuO_2纳米粒子的石墨烯纳米复合材料(RuO_2/G)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)和X射线光电子能谱(XPS)对材料的结构和形貌进行了表征。结果表明,在复合材料中,平均粒径为3.6nm的RuO_2纳米粒子均匀地负载在石墨烯片层上。该材料作为超级电容器的电极材料,表现出了良好的电容性能。当RuO_2的质量分数为35%时,在6mol/L KOH电解液中,复合材料的比电容为402.5F/g,且表现出了较高的能量密度(14 Wh/kg)和功率密度(50 W/kg)。该复合材料体现了石墨烯双电层电容和RuO_2赝电容的性质,为性能优异的储能材料。  相似文献   

19.
在不同温度的反应釜中使KMnO_4与MnCl_2进行反应并掺杂活性碳,然后组合球磨工艺制备了超级电容器复合电极材料。XRD揭示MnO_2/活性碳复合物低于140℃烧结5h为水合非晶态,而165℃烧结时,开始呈现弱的衍射峰。通过SEM分析得出电活性复合物形貌呈现为细小环绕微纳米晶须球状。采用循环伏安、怛流充放电及阻抗谱测试MnO_2/活性碳复合电极的电化学性能。当扫描速率为10 mV/s时,MnO_2/活性碳复合电极的比电容值达365F/g且等效串联电阻值仅为1.32Ω。经3 000次循环后复合电极的比电容值仅下降约6%。  相似文献   

20.
以聚吡咯为碳源,通过一步碳化-活化法制备了氮/磷双掺杂分级孔结构的多孔碳。在6mol/L KOH和1mol/L Na2SO4电解液中研究了所制备多孔碳的电化学电容性能。研究表明,活化后的碳材料A-Z0比表面积高达1 433m~2/g,总孔体积为0.96cm~3/g,氮和磷元素的含量分别为1.78%和0.24%,证明A-Z0为氮/磷双掺杂的高比表面积的多孔碳。由于高的比表面积、分级孔道结构以及氮/磷官能团的协同作用,A-Z0材料表现出较为优异的电化学特性。在电流密度为0.5和30A/g时,其比电容分别达到209.3和176F/g,显示出高的比电容和倍率特性。此外,该材料也显示出优异的循环稳定性(4A/g下循环10 000圈后电容保持率为98%)。在中性电解液中,A-Z0组装成的对称两电极电容器呈现出高的能量密度(13.3 Wh/kg),表明该材料在超级电容器等领域具有潜在应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号