首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用固相反应烧结法制备了ZrO2掺杂的Ba(Zn1/3Ta2/3)O3微波介质陶瓷,研究了陶瓷的烧结特性和介电性能。结果表明,ZrO2掺杂能有效降低Ba(Zn1/3Ta2/3)O3陶瓷的烧结温度,改善陶瓷的微波介电性能。当x(ZrO2)=4%时,Ba(Zn1/3Ta2/3)O3陶瓷致密化烧结温度由纯相时的1 600℃降至1 300℃,同时陶瓷材料的微波介电性能达到最佳值,即介电常数εr=34.79,品质因数与频率的乘积Q×f=148 000(8GHz),谐振频率温度系数τf=0.3×10-6/℃。  相似文献   

2.
采用传统固相反应法制备了(1-x)(Mg0.7Zn0.3)TiO3-x(Ca0.61La0.26)TiO3(MZCLT)微波介质陶瓷。分析了(Ca0.61La0.26)TiO3掺杂量对MZCLT陶瓷相结构、烧结性能和介电性能的影响。所制MZCLT陶瓷的主晶相为(Mg0.7Zn0.3)TiO3和(Ca0.61La0.26)TiO3,还存在微量的(Mg0.7Zn0.3)Ti2O5。当x=0.13,1275℃烧结4h时,0.87(Mg0.7Zn0.3)TiO3-0.13(Ca0.61La0.26)TiO3陶瓷介电性能较佳:εr=26.7,Q·f=86011GHz(8GHz),τf为-6×10-6/℃,优于(Mg0.7Zn0.3)TiO3陶瓷介电性能(εr=19.2,Q·f=253000GHz,τf为-39×10-6/℃)。  相似文献   

3.
采用固相反应法,在0.92MgTiO3-0.08CaTiO3配比的基础上,制备了不同Mg2SiO4添加量的MgO-TiO2-CaO-SiO2复合陶瓷体系,研究了Mg2SiO4添加量对其物相结构、微观形貌及微波介电性能的影响。结果表明,体系中不存在杂相,其致密化烧结温度随Mg2SiO4添加量的增加而提高,添加适量Mg2SiO4能够降低体系的εr和谐振频率温度系数τf。当添加质量分数为35%的Mg2SiO4,体系在1360℃烧结2h可获得优异的微波介电性能:εr=15.5,Q·f=42640GHz(6GHz),τf=–13×10–6/℃。  相似文献   

4.
采用传统固相反应法制备了(1-x)(Mg0.95Zn0.05)TiO3-x(La0.44Sr0.33)TiO3(MZLST)介质陶瓷。系统研究了(La0.44Sr0.33)TiO3掺杂量对MZLST陶瓷烧结特性、相构成、微观结构和微波介电性能的影响。结果表明,掺杂少量的(La0.44Sr0.33)TiO3后,MZLST陶瓷的主晶相为(Mg0.95Zn0.05)TiO3和(La0.44Sr0.33)TiO3,随着烧结温度的升高,第二相(Mg0.95Zn0.05)Ti2O5的含量增加。当x=0.10时,MZLST陶瓷在1 285℃烧结2h获得最佳的介电常数εr=22.17,品质因数Q.f=48 471GHz(6.72GHz),谐振频率温度系数τf=-7.99×10-6/℃。  相似文献   

5.
为了使微波介电陶瓷在厘米波段获得应用,采用固相法制备了低εr、高Q·f值的(1–x)CaWO4-xMg2SiO4(x=0~1.0)介电陶瓷,并添加质量分数为5%的TiO2调节其τf。研究了其晶相结构和微波介电性能。结果表明,x≤0.2时,Mg2SiO4和CaWO4形成不完全固溶体;x=0.2时,在1300℃烧结2h所制得的陶瓷具有优良的微波介电性能:εr=9.58,Q·f=56400GHz,τf=–8.2×10–6/℃,并采用该材料制作了f0=5.4909GHz,插入损耗小于1.1dB,外形尺寸为5.0mm×2.5mm×4.0mm的两级片式介质带通滤波器。  相似文献   

6.
研究了固相添加CuO对Zn1.8SiO3.8陶瓷的烧结温度、微观结构、相结构及微波介电性能的影响。结果表明,CuO的加入有助于降低Zn1.8SiO3.8陶瓷的烧结温度,Zn1.8SiO3.8陶瓷的烧结温度从1 350℃降到1 000℃。其中掺杂w(CuO)=5%(质量分数)的Zn1.8SiO3.8陶瓷,在1 000℃烧结3h可获得结构致密的烧结体,且微波介电性能达到最佳:介电常数εr=6.5,品质因数与频率之积Q·f=39 373GHz,频率温度系数τf=-48×10-6/℃。  相似文献   

7.
采用传统固相法对使用Mg取代一部分Zn形成的六方钛铁矿型无限固溶体(Zn0.9Mg0.1)TiO3陶瓷进行了低温烧结研究。低熔点玻璃ZnO-B2O3-SiO2(ZBS)的加入提高了烧结致密度,使烧结温度降低到900℃以下,制得了不含Zn2TiO4的单一六方(Zn0.9Mg0.1)TiO3相陶瓷,其微波介电性能优异。加入质量分数为0.5%的ZBS玻璃时,在900℃成瓷良好,介电常数εr=20.53,品质因数与频率的乘积Q×f=61 630GHz(f=7.4GHz)。  相似文献   

8.
采用普通固相合成法制备了Bi1-xGdxNbO4微波介质陶瓷,研究了N2烧结气氛下,Gd部分取代BiN-bO4陶瓷中的Bi对其烧结性能及微波介电性能的影响。结果表明,不同Gd掺杂量的样品,相结构差别不大,均以低温斜方相为主晶相。随着Gd含量的增加,陶瓷样品的烧结温度升高,表观密度和相对介电常数均略有减小,品质因数与频率之积(Q×f)值也会发生变化。当x(Gd)=0.008时,900℃烧结的Bi0.992Gd0.008NbO4陶瓷样品具有较好的介电性能:介电常数rε=43.6(4.3 GHz),Q×f=14 288 GHz(4.3 GHz),谐振频率温度系数τf≈0。  相似文献   

9.
利用醇盐溶胶-凝胶法合成(1-x)Zn2SiO4-xMg2SiO4陶瓷(x=0.1-0.9)。差热分析结合XRD分析表明(1-x)Zn2SiO4-xMg2SiO4的成相温度在800℃附近,1 150℃预烧粉体后,获得粒径为40-50 nm的Zn2SiO4-Mg2SiO4复相陶瓷粉末。复相陶瓷的最佳烧结温度在1 250℃-1 300℃,烧结过程中,部分组分产生了MgSiO3杂相。当x=0.6时,在1 250℃烧结后陶瓷的介电性能最优如下:εr=6.66,Q×f=174 800 GHz,τf=-38.7 ppm/℃,是一种有望应用于毫米波频段的新型介质陶瓷材料。  相似文献   

10.
采用传统的固相反应法制备(Sr1-xBax)La4Ti4O15(x=0~1,BSLT)微波介质陶瓷,并对其物相组成、晶体结构及微波介电性能进行分析。研究结果表明,Ba2+含量的增加降低了BSLT陶瓷的烧结温度,陶瓷的主晶相为(Sr,Ba)La4Ti4O15,并伴随有第二相La2TiO5的生成。在微波频率下,随Ba2+含量的增加,BSLT陶瓷的微波介电常数εr及品质因数与频率之积Q×f值先增大后减小,谐振频率温度系数τf为(-4~-11)×10-6/℃,优化出(Sr0.9Ba0.1)La4Ti4O15陶瓷具有最佳微波介电性能:εr=47.5,Q×f=31 582GHz,τf=-7.5×10-6/℃。  相似文献   

11.
High purity organic-tantalum precursors for thin film ALD TaN were synthesized and characterized.Vapor pressure and thermal stability of these precursors were studied.From the vapor pressure analysis,it was found that TBTEMT has a higher vapor pressure than any other published liquid TaN precursor,including TBTDET,TAITMATA,and IPTDET.Thermal stability of the alkyl groups on the precursors was investigated using a 1H NMR technique.The results indicated that the tertbutylimino group is the most stable group on TBTDET and TBTEMT as compared to the dialkylamido groups.Thermal stability of TaN precursors decreased in the following order:TBTDET > PDMAT > TBTEMT.In conclusion,precursor vapor pressure and thermal stability were tuned by making slight variations in the ligand sphere around the metal center.  相似文献   

12.
In order to diagnose the laser-produced plasmas, a focusing curved crystal spectrometer has been developed for measuring the X-ray lines radiated from a laser-produced plasmas. The design is based on the fact that the ray emitted from a source located at one focus of an ellipse will converge on the other focus by the reflection of the elliptical surface. The focal length and the eccentricity of the ellipse are 1350 mm and 0.9586, respectively. The spectrometer can be used to measure the X- ray lines in the wavelength range of 0.2-0.37 nm, and a LiF crystal (200) (2d = 0.4027 nm) is used as dispersive element covering Bragg angle from 30° to 67.5°. The spectrometer was tested on Shengnang- Ⅱ which can deliver laser energy of 60-80 J/pulse and the laser wavelength is 0.35 μm. Photographs of spectra including the 1 s2p ^1P1-1s^2 ^1S0 resonance line(w), the 1s2p ^3P2-1s^2 1S0 magnetic quadrupole line(x), the 1s2p ^3P1-1 s^2 ^1S0 intercombination lines(y), the 1 s2p ^3S~1-1 s^2 ^1S0 forbidden line(z) in helium-like Ti Ⅹ Ⅺ and the 1 s2s2p ^2P3/2-1 s622s ^2S1/2 line(q) in lithium-like Ti Ⅹ Ⅹhave been recorded with a X-ray CCD camera. The experimental result shows that the wavelength resolution(λ/△ 2) is above 1000 and the elliptical crystal spectrometer is suitable for X-ray spectroscopy.  相似文献   

13.
From its emergence in the late 1980s as a lower cost alternative to early EEPROM technologies, flash memory has evolved to higher densities and speedsand rapidly growing acceptance in mobile applications.In the process, flash memory devices have placed increased test requirements on manufacturers. Today, as flash device test grows in importance in China, manufacturers face growing pressure for reduced cost-oftest, increased throughput and greater return on investment for test equipment. At the same time, the move to integrated flash packages for contactless smart card applications adds a significant further challenge to manufacturers seeking rapid, low-cost test.  相似文献   

14.
The parallel thinning algorithm with two subiterations is improved in this paper. By analyzing the notions of connected components and passes, a conclusion is drawn that the number of passes and the number of eight-connected components are equal. Then the expression of the number of eight-connected components is obtained which replaces the old one in the algorithm. And a reserving condition is proposed by experiments, which alleviates the excess deletion where a diagonal line and a beeline intersect. The experimental results demonstrate that the thinned curve is almost located in the middle of the original curve connectivelv with single pixel width and the processing speed is high.  相似文献   

15.
The relation between the power of the Brillouin signal and the strain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Bfillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of the parameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.  相似文献   

16.
Today, micro-system technology and the development of new MEMS (Micro-Electro-Mechanical Systems) are emerging rapidly. In order for this development to become a success in the long run, measurement systems have to ensure product quality. Most often, MEMS have to be tested by means of functionality or destructive tests. One reason for this is that there are no suitable systems or sensing probes available which can be used for the measurement of quasi inaccessible features like small holes or cavities. We present a measurement system that could be used for these kinds of measurements. The system combines a fiber optical, miniaturized sensing probe with low-coherence interferometry, so that absolute distance measurements with nanometer accuracy are possible.  相似文献   

17.
This paper reviews our recent development of the use of the large-scale pseudopotential method to calculate the electronic structure of semiconductor nanocrystals, such as quantum dots and wires, which often contain tens of thousands of atoms. The calculated size-dependent exciton energies and absorption spectra of quantum dots and wires are in good agreement with experiments. We show that the electronic structure of a nanocrystal can be tuned not only by its size,but also by its shape. Finally,we show that defect properties in quantum dots can be significantly different from those in bulk semiconductors.  相似文献   

18.
An improving utilization and efficiency of critical equipments in semiconductor wafer fabrication facilities are concerned. Semiconductor manufacturing FAB is one of the most complicated and cost sensitive environments. A good dispatching tool will make big difference in equipment utilization and FAB output as a whole. The equipment in this paper is In-Line DUV Scanner. There are many factors impacting utilization and output on this equipment group. In HMP environment one of the issues is changing of reticule in this area and idle counts due to load unbalance between equipments. Here we'll introduce a rule-based RTD system which aiming at decreasing the number of recipe change and idle counts among a group of scanner equipment in a high-mixed-products FAB.  相似文献   

19.
The epi material growth of GaAsSb based DHBTs with InAlAs emitters are investigated using a 4 × 100mm multi-wafer production Riber 49 MBE reactor fully equipped with real-time in-situ sensors including an absorption band edge spectroscope and an optical-based flux monitor. The state-of-the-art hole mobilities are obtained from 100nm thick carbon-doped GaAsSb. A Sb composition variation of less than ± 0.1 atomic percent across a 4 × 100mm platen configuration has been achieved. The large area InAlAs/GaAsSb/InP DHBT device demonstrates excellent DC characteristics,such as BVCEO>6V and a DC current gain of 45 at 1kA/cm2 for an emitter size of 50μm × 50μm. The devices have a 40nm thick GaAsSb base with p-doping of 4. 5 × 1019cm-3 . Devices with an emitter size of 4μm × 30μm have a current gain variation less than 2% across the fully processed 100mm wafer. ft and fmax are over 50GHz,with a power efficiency of 50% ,which are comparable to standard power GaAs HBT results. These results demonstrate the potential application of GaAsSb/InP DHBT for power amplifiers and the feasibility of multi-wafer MBE for mass production of GaAsSb-based HBTs.  相似文献   

20.
A new quantum protocol to teleport an arbitrary unknown N-qubit entangled state from a sender to a fixed receiver under M controllers(M < N) is proposed. The quantum resources required are M non-maximally entangled Greenberger-Home-Zeilinger (GHZ) state and N-M non-maximally entangled Einstein-Podolsky-Rosen (EPR) pairs. The sender performs N generalized Bell-state measurements on the 2N particles. Controllers take M single-particle measurement along x-axis, and the receiver needs to introduce one auxiliary two-level particle to extract quantum information probabilistically with the fidelity unit if controllers cooperate with it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号