首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以邯钢公司邯宝炼钢厂260t转炉为研究对象,分析转炉复吹改造前后的冶金效果。结果表明,通过改进底吹结构和溅渣工艺,转炉终点钢水的磷含量达到较低水平,钢水中氧和炉渣中TFe含量显著降低。在整个炉役期间,钢水中的[C]·[O]积都能达到较低水平。研究表明,采用合理的溅渣和调渣工艺,可保证转炉炉龄和底吹供气效果同步。  相似文献   

2.
为解决转炉高炉龄条件下,由于采用低底吹搅拌强度和溅渣护炉工艺导致的转炉实际底吹效果难以保证的问题,首钢股份公司迁安钢铁公司进行了转炉炼钢高效复吹技术开发。开发过程中,形成了一系列关键工艺技术,主要包括:底吹风口布置与熔池流场优化、溅渣护炉条件下的底吹风口裸露技术、底吹风口长寿命技术等,并开展了底吹模式优化,实现了转炉全炉役底吹效果稳定控制,在炉龄6 500炉左右时,炉役后期终点钢水碳氧积依旧能稳定控制在0.002 0以下。工艺技术应用后,生产低碳、超低碳钢(终点碳质量分数为0.025%~0.050%),吹炼终点钢水氧质量分数较前工艺平均降低0.025%以上,终渣TFe质量分数降低4%以上,耐火材料侵蚀明显降低,转炉脱磷效率明显提高。  相似文献   

3.
《炼钢》2021,37(3):10-16
为强化转炉熔池搅拌效果,改善炉内冶金反应动力学条件,在120 t复吹转炉上开展了高强度底吹CO_2的工业试验,吹炼时底吹强度最高可达0.21 m~3/(t·min),试验采用喷枪型底吹元件,底吹气体包括N_2、Ar和CO_2,根据不同冶炼阶段单一气体供气或混合后供气。试验结果表明,在终渣碱度基本相同的情况下,高强度底吹CO_2工艺终渣氧化铁质量分数最低,转炉终点碳氧积、终点钢水P、S、N含量均比原底吹工艺和高强度底吹N_2/Ar工艺低,终点钢水Mn含量、脱磷率和脱硫率均比原底吹工艺高。高强度底吹CO_2有利于降低转炉炼钢成本,提升钢水纯净度。  相似文献   

4.
陈均 《炼钢》2020,36(5):21-26,36
针对西昌钢钒半钢冶炼钢水及炉渣氧化性高带来的透气砖侵蚀快、底吹效果不佳的问题,通过对底吹供气元件优选、优化透气砖布置方案以及热更换方案,提高了全炉役底吹搅拌效果。工业应用表明,底吹工艺参数优化后,透气砖热更换时间平均缩短95 min,炼钢转炉全炉役钢-渣间L_P由78.0提高到92.5,终渣TFe质量分数由19.7%降低到18.6%,终点钢水碳氧积由0.002 8降低到0.002 3,在提高转炉生产效率的同时,降低了冶炼成本。  相似文献   

5.
为了研究转炉底吹气体对钢水终点氮质量分数影响,研究了迁钢210 t顶底复吹转炉底吹模式对转炉终点氮质量分数的影响,并基于钢液脱氮和吸氮理论对试验结果进行了分析。应用实践结果表明,随着铁水碳质量分数增加以及终点氧质量分数降低,终点氮质量分数逐渐降低;在铁水条件、副原料、转炉终点、底吹流量以及过程操作一致条件下,随着氮氩切换时间节点延长,钢液增氮量逐渐增加。当切换时间节点为吹氧比56%以内,底吹氮氩切换对终点钢水氮质量分数影响较小,当切换时间节点为吹氧比高于56%时,终点钢水氮质量分数增幅较大。  相似文献   

6.
针对马鞍山钢铁股份有限公司300t顶底复合吹炼转炉原工艺存在的问题,通过对氧枪系统管道压力损失测定,喷头参数分析及实验室底吹系统水模试验的研究,借鉴同类转炉相关经验,对氧枪喷头、吹炼枪位、加料及底吹工艺进行了优化。生产实践表明,其对稳定转炉操作,改善终渣状况、减少终点钢水氧含量、提高转炉炼钢过程和终点控制水平等方面均有不同程度的效果。  相似文献   

7.
针对承钢120 t复吹转炉底吹流量低、底吹砖寿命短、复吹率偏低等问题,采用快换底吹工艺,优化底吹流量。根据钢种终点碳含量与碳氧积参数,建立动态模型,实现底吹流量的动态控制,有效降低了渣中氧化铁含量、终点碳氧积,改善了底吹的冶金效果,提高了钢水质量。  相似文献   

8.
阐述了脱磷炉相关工艺研究以及与常规转炉冶炼时的主要技术指标对比情况。主要工艺有少渣高效冶炼工艺、底吹系统优化,底吹深脱磷工艺、底吹可视化工艺,转炉终点静止脱碳工艺。技术指标对比分析结果显示:脱磷炉终点平均磷含量为O.014%,常规转炉终点平均磷含量为0.019%,脱磷炉脱磷效果明显;脱磷炉石灰消耗控制在41.45kg/t,常规转炉石灰消耗控制在53.27kg/t;脱磷炉终点渣中平均TFe含量为11.73%,常规转炉终点渣中平均TFe含量为14.38%,脱磷炉金属收得率高;脱磷炉平均终点钢水残锰0.102%,常规转炉平均出钢残锰0.075%,脱磷炉合金消耗少;脱磷炉平均喷溅渣量为3.93kg/t,常规转炉平均喷溅渣量为13.23kg/t,脱磷炉过程控制平稳,金属损耗少;脱磷炉冶炼钢水终点碳氧积为0.002129,常规转炉冶炼钢水终点平均碳氧积为0.002659。脱磷炉控制水平较好。  相似文献   

9.
富强  郭晓春  俞潮 《炼钢》2020,36(1):4-7
通过将120 t顶底复吹转炉底吹供气强度由0.026 m~3/(t·min)提高到0.103 m~3/(t·min),为钢水提供动力学条件;同时降低炉底渣层厚度,由200~300 mm降低到50~100 mm,减少供气阻力,增加钢水的动力学条件,加强钢水搅拌使钢渣充分融合,促进碳氧反应降低钢水终点氧含量。转炉终点钢水碳氧积从0.003 1%降低至0.002 3%、终渣FeO质量分数从18.64%降低至18.12%,有效提高了钢水洁净度,改善了钢水质量。  相似文献   

10.
本钢炼钢厂通过对炉衬砖材质的调整和炉底综合砌筑工艺的实施,提高了底吹的效果。碳氧积水平大幅度降低,平均0.00225,最低小于0.0020,达到了国内先进水平。碳氧积水平的提高,使转炉的搅拌更加充分,促进了造渣物料的熔化,降低了造渣料的消耗。钢渣反应更接近平衡后,降低了吹炼终点钢水和炉渣的氧化性,降低了转炉脱氧成本及精炼处理中改渣脱氧铝的消耗,最终达到提高钢水质量以及降低生产成本的目的。后搅技术的开发和实施,使转炉终点磷进一步降低,并提高了脱磷效率。  相似文献   

11.
莱钢采用BOF-LF-CC工艺流程生产20CrMnTiH齿轮钢,在不经过VD炉真空处理的情况下,通过提高转炉终点碳命中率,使用组合式挡渣工艺,优化转炉底吹流量及钢包底吹氩模式,转炉全铝一次脱氧,调整精炼渣系,提高大包长水口密封性,避免钢水吸氧二次氧化,引进钢包下渣自动监测系统等工艺优化改进措施,有效降低了铸坯全氧含量,平均铸坯全氧含量达到了0.001 3%。  相似文献   

12.
随着超低碳、超低磷钢种冶炼的增多,济钢复吹转炉终点氧含量大幅提高,严重侵蚀了转炉炉衬。从高氧化性炉渣对炉衬的侵蚀机理入手,提出了兼顾溅渣层和炉底的溅渣工艺,介绍了超低碳、超低磷钢溅渣护炉工艺参数的优化及取得的效果。  相似文献   

13.
智建国  吴伟  高琦  徐涛  罗海明  张晓峰 《钢铁》2020,55(7):72-77
 针对转炉冶炼存在的转炉前期化渣速度慢,冶炼终点钢水、炉渣氧化性高,终点磷含量控制不稳定等问题,利用炉渣熔化性测定、热力学平衡计算、炉渣矿相分析的方法研究了260 t转炉造渣、供氧工艺。结果表明,转炉初期渣熔化温度为1 330 ℃,不利于转炉前期化渣;终渣熔化温度为1 200 ℃,不利于转炉后期的炉衬维护;终点钢水磷含量与渣钢间磷平衡值差距较大,说明转炉吹炼终点动力学条件不足;炉渣中游离氧化钙含量较高,有部分未熔化的石灰。通过优化转炉渣料加入顺序和数量,强化转炉终点氧枪枪位控制、底吹搅拌等技术措施,可获得较高的转炉终点脱磷率和渣-钢间磷分配比,使终点渣-钢间磷含量更接近平衡;终点炉渣发育良好,游离氧化钙含量适中。  相似文献   

14.
介绍了迁钢转炉复吹的发展历程,并对迁钢新开发的转炉全炉役底吹稳定控制技术(SEBC)进行了介绍。采用该技术后,解决了低底吹搅拌强度下的转炉底吹效果难以稳定控制的难题,实现了转炉全炉役碳氧积稳定控制,平均碳氧积不高于0.002 0,即使在炉龄6 000炉次以后,碳氧积依旧能够保持稳定控制。以1号转炉为例,转炉复吹效果的提高和稳定带来转炉溅渣成本降低31.83%,转炉补炉料成本降低38.28%,转炉脱磷率由85%提高到87%,终渣TFe质量分数由17.29%降低到15.60%,溅渣时间缩短45 s,氧活度降低1.64×10-4。  相似文献   

15.
介绍了抚钢超级双相不锈钢冶炼工艺流程,进行了VOD炉真空吹氧去碳、包底吹氮、二次造渣及喂线处理生产实践。研究表明,通过设定合理的吹氧、吹氮工艺,实现了低碳含量、准确氮含量的控制。通过在还原过程中调整合适的炉渣碱度,对钢液进行喂线处理,强化脱硫脱氧,从而改性夹杂物形貌,以确保钢液精准的化学成分及良好的纯净度控制,为热加工创造有利条件。  相似文献   

16.
抑制回硅是低硅品种钢冶炼的重点和难点,南钢中厚板卷厂通过转炉出钢留氧操作,精炼炉留氧升温,脱氧、脱硫造渣,连铸严格的保护浇注及吹氩塞棒、吹氩浸入式上水口的应用等一系列工艺优化和操作的改进,使整个冶炼过程钢水回硅量稳定控制在200×10-6以内,钢水终点成分完全满足低硅钢要求。  相似文献   

17.
为了定量研究温度、炉渣成分、钢液成分对转炉磷分配比和平衡磷含量的影响,基于共存理论建立转炉炼钢六元渣系的组元活度计算模型和磷分配比LP计算模型,将磷分配比模型计算结果与转炉炼钢实测磷分配比进行对比,发现两者吻合较好。定量计算结果表明,当炉渣碱度为3.8时,钢液温度从1 640升到1 680 ℃,平衡磷质量分数从0.011 5%增加至0.019 8%。同时定量计算了炉渣碱度及氧化铁含量变化对平衡磷含量的影响,但实际炉渣控制需要考虑炉渣黏度、铁损及炉衬侵蚀。转炉吹炼终点钢中元素含量数量级较小,计算表明终点成分变化对磷活度系数的影响不大,各元素对脱磷的影响主要体现在冶炼初期和过程。  相似文献   

18.
RH oxygen top- blowing for raising temperature should be avoided to improve the cleaniness of IF steel as far as possible, which made the end point temperature of converter higher and then dephosphorization in converter became difficult. Thermodynamics and dynamics of dephosphorization process in converter were calculated to study the relationship of phosphate partition ratio to compositions of molten steel, slag, temperature in molten steel based on slag- remaining and double slag process. Through changing the first deslagging time and the composition of slag,then serial sampling from molten steel and slag in industrial production experiments, the behavior of phosphorus in molten steel was studied and then the main measures obtaining higher phosphate partition ratio in slag- remaining and double slag process are: small- sized scrap or thin steel sheet should be used to increase FeO content in slag and prevent molten steel temperature increase when oxygen blowing in converter begins. Slag with high phosphorus content should be poured when amount of oxygen blowing reachs 40% of the total; FeO content in slag should be increased to assure the mobility of slag and then reduce rephosphorization from slag to steel when amount of oxygen blowing is greater than 40% and less than 80% of the toal; the end- point slag with 4. 0 basicity and 18 mass%-20 mass% FeO content and molten steel temperature should be controlled.  相似文献   

19.
通过分析了水钢100 t顶底复吹转炉炉衬的损坏机理和影响炉渣熔化性能的因素,得出每1%V2O5降低炉渣熔化温度27℃,每增加1%TiO2含量,炉渣半球温度约降低5℃,当炉渣TFe含量在20%以上时,炉渣熔化温度在1 320~1 395℃。通过采取铁水捞渣工艺;建立转炉热平衡操作模式,提高拉碳率;铁水Si在0.6%~0.8%时,采用单渣操作,铁水Si>0.8%时,采用双渣操作;建立转炉最佳炉型及控制措施;优化钢水温度制度和优化脱氧合金化制度,降低出钢温度;在补吹提枪前加入适量焦丁,确保冶炼终点炉渣中FeO保持较低含量,提高溅渣护炉效果等工艺措施,结果使转炉炼钢的耐火材料消耗降到8.75 kg/t钢,转炉炉龄达到29 336炉。  相似文献   

20.
Mathematical modeling of stainless steelmaking in an AOD (argon‐oxygen decarburisation) converter with side and top combined blowing has been preliminarily investigated. The actual situations of the side and top combined blowing AOD process were analysed. A mathematical model for the whole refining process of stainless steel has been proposed and developed. The model is based on the assumption that one part of the oxygen blown through a top lance reacts with CO escaping from the bath, another part of the oxygen oxidizes the elements in the molten steel droplets splashed by the oxygen jet, and the remaining oxygen penetrates and dissolves into the molten steel through the pit stroked by the jet. All the oxygen entering into the bath oxidizes C, Cr, Si, and Mn dissolved in the steel and also the Fe of the steel melt, but the FeO generated is also an oxidant of C, Cr, Si, and Mn in the steel. During the process, all possible oxidation‐reduction reactions occur simultaneously and reach their equilibria, respectively their combined equilibrium, in competition at the liquid/bubble and liquid/slag interfaces. In the simple side blowing after the top blowing operation is finished, the possible reactions take place simultaneously and reach a combined equilibrium in competition at the liquid/bubble interfaces. The overall decarburization rate in the refining process is the sum of the contributions of both the top and side blowing processes. It is also assumed that at high carbon concentrations, the oxidation rates of elements are mainly dependent upon the supplied oxygen rate, and at low carbon contents, the rate of decarburisation is primarily related to the mass transfer of carbon from the molten steel bulk to the interface. It is further assumed that the non‐reacting oxygen blown into the bath does not accumulate in the steel and will escape from the bath and react with CO in the atmosphere above the bath. The study presents calculations of the refining rate and the mass and heat balances of the system for the whole process. Additionally, the influences of the operating factors, including addition of slag materials, scrap, and alloy agents, the non‐isothermal conditions, the changes in the amounts of metal and slag during the whole refining process, and others have all been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号