首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
用超声溶剂热法制备了磁性纳米ZnxCo1-xFe2O4空心微球,采用X射线衍射仪(XRD)和透射电子显微镜(TEM)对其结构和形貌进行了表征。结果表明,所制备的ZnxCo1-xFe2O4空心微球均为标准的立方结构,说明锌的掺杂并不影响产物的晶型,但对产物的粒径影响较大。所制备的CoFe2O4空心微球的平均粒径为50 nm左右,但Zn0.5Co0.5Fe2O4空心微球的平均粒径为200 nm左右;用振动样品磁强计(VSM)以及网络矢量分析仪测试了微球的磁性能和吸波性能,结果显示,微球的饱和磁化强度随锌含量的增加先略微增大后减小,而矫顽力随锌含量的增加单调递减。当x=0.3时微球的磁性和吸波性能都为最佳。  相似文献   

2.
王凡非  冯启明  王维清  黄阳 《功能材料》2013,44(12):1782-1786
以硝酸钴和硝酸铁为主要原料,采用化学共沉淀法制备CoFe2O4纳米磁性微粒,然后将其与膨胀石墨复合制得CoFe2O4载量不同的磁性膨胀石墨。用X射线衍射(XRD)、透射电镜(TEM)、震动样品磁强计(VSM)、扫描电镜(SEM)对CoFe2O4纳米磁性微粒和磁性膨胀石墨进行了表征。并研究了CoFe2O4载量不同的磁性膨胀石墨对不同油类的饱和吸油量、对水和油的竞争吸附比、不同吸附时间和环境温度对饱和吸油量的影响、磁分离回收及离心法再生吸附后的磁性膨胀石墨。结果表明,合成的CoFe2O4结晶度高,晶粒度约为13nm。CoFe2O4载量越低、油品粘度越高,磁性膨胀石墨的饱和吸油量越大;油品粘度越大,油、水竞争吸附时水含量越低;磁性膨胀石墨10s即可达到饱和吸油量的80%,90s后达到饱和吸附;CoFe2O4载量为35%时,磁回收率为99.2%,且再生离心转速为3000r/min时再生吸油量达到较大值。  相似文献   

3.
以气泡为模板,通过简单的一步水热法合成了尖晶石型MⅡFe2O4(M=Fe,Ni)纳米空心微球,并采用柠檬酸对其表面进行了修饰。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)和振动样品磁强计(VSM)对修饰前后纳米空心微球的形貌、结构和磁性能进行了表征。结果表明,MⅡFe2O4(M=Fe,Ni)纳米空心微球的尺寸在300~600nm,前躯体溶液的pH值大于9或反应时间小于12h都不能生成空心结构。此外,MⅡFe2O4(M=Fe,Ni)纳米空心微球呈现较好的超顺磁性,但与纳米Fe3O4实心微粒相比较,Fe3O4纳米空心微球的饱和磁化强度却有所降低。  相似文献   

4.
以气泡为模板,通过简单的一步水热法合成了尖晶石型MⅡFe2O4(M=Fe,Ni)纳米空心微球,并采用柠檬酸对其表面进行了修饰。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)和振动样品磁强计(VSM)对修饰前后纳米空心微球的形貌、结构和磁性能进行了表征。结果表明,MⅡFe2O4(M=Fe,Ni)纳米空心微球的尺寸在300~600nm,前躯体溶液的pH值大于9或反应时间小于12h都不能生成空心结构。此外,MⅡFe2O4(M=Fe,Ni)纳米空心微球呈现较好的超顺磁性,但与纳米Fe3O4实心微粒相比较,Fe3O4纳米空心微球的饱和磁化强度却有所降低。  相似文献   

5.
尖晶石型CoFe2O4/TiO2磁性光催化剂的制备及其性能   总被引:1,自引:0,他引:1  
首先采用化学共沉淀法制备尖晶石型CoFe2O4,然后采用溶胶-凝胶法与钛酸丁四酯复合制备不同CoFe2O4载量(质量分数,下同)的CoFe2O4/TiO2磁性光催化剂。再利用X射线衍射(XRD)、透射电子显微镜(TEM)、振动样品磁强计(VSM)、同步热分析仪(TG-DSC)和紫外可见吸收光谱(UV-Vis)分别对物相、形貌、磁学性能等进行了分析和表征。最后在300 W紫外灯(主波长为253.7nm)照射下降解一定浓度的甲基橙溶液,研究不同CoFe2O4载量的CoFe2O4/TiO2磁性光催化剂在相变温度下对甲基橙溶液降解效果。结果表明,合成的CoFe2O4结晶度高,粒径为10~20nm,具尖晶石结构。CoFe2O4能较为均匀地负载于TiO2表面,CoFe2O4/TiO2磁性光催化剂具有超顺磁性。CoFe2O4/TiO2磁性光催化剂对甲基橙降解性能随CoFe2O4载量增加而降低。  相似文献   

6.
采用化学镀工艺,在空心陶瓷微球表面复合钴-铁合金.首先,利用场发射扫描电子显微镜(FE-SEM)、X射线能谱仪( EDS)分别对化学镀前后的空心陶瓷微球进行表征;其次,利用X射线衍射仪(XRD)表征镀钴-铁空心陶瓷微球的结晶状态;最后,用网络矢量分析仪和振动样品磁强计(VSM)分别测试镀钻-铁空心陶瓷微球的电磁损耗和磁性能,并通过计算分析微球的微波吸收性能.结果表明:经过化学镀,空心陶瓷微球表面沉积了均匀、致密的钴-铁合金.镀钴-铁空心微球(2.5g/cm3)在2~18GHz的频率范围内有良好的吸波性能,并且强于单种金属镀层的空心陶瓷微球,具有宽频的吸收特性.另外,热处理还能改善镀层钴-铁合金的软磁性能.  相似文献   

7.
双微乳液法制备CoFe2O4纳米颗粒及其磁性能研究   总被引:1,自引:0,他引:1  
以TritonX-100/正己醇/正己烷/水为反应介质,采用双微乳液法合成了尖晶石型CoFe2O4磁性纳米颗粒.利用TG-DSC、FTIR、TEM、XRD、VSM等测试技术对CoFe2O4煅烧前后的结构和磁性能进行表征.结果表明,采用微乳液法制备的CoFe2O4前驱物经煅烧后可获得纳米级磁性微粒.煅烧温度对微粒粒径和磁性能有较大影响,经300℃煅烧后的微粒粒径为15nm,700℃煅烧后微粒粒径增大为52nm.样品的饱和磁化强度和剩余磁化强度也随热处理温度的升高而增加.  相似文献   

8.
冯光峰  黎汉生 《材料导报》2007,21(F05):36-38
以TritonX-100/正己醇/正己炕/水为反应介质,采用双微乳液法合成了尖晶石型CoFe2O4磁性纳米颗粒。利用TG-DSC、FTIR、TEM、XRD、VSM等测试技术对CoFe2O4煅烧前后的结构和磁性能进行表征。结果表明,采用微乳液法制备的CoFe2O4前驱物经煅烧后可获得纳米级磁性微粒。煅烧温度对微粒粒径和磁性能有较大影响,经300℃煅烧后的微粒粒径为15nm,700℃煅烧后微粒粒径增大为52am。样品的饱和磁化强度和剩余磁化强度也随热处理温度的升高而增加。  相似文献   

9.
以Fe(NO3)3和Ba(NO3)2为原料,乙醇为扩孔剂,采用柠檬酸溶胶-凝胶自蔓延燃烧法制得蜂窝状钡铁氧体空心微球。采用红外光谱(IR)和综合热分析仪(TG-DSC)分析燃烧后样品的热分解过程;采用电子探针(EPMA)、粉体X-射线衍射(XRD)和振荡样品磁强计(VSM)对蜂窝状钡铁氧体空心微球的微观结构和磁性进行测试。结果表明:在700℃煅烧2h可得到具有介孔和大孔复杂微观结构的蜂窝状钡铁氧体空心微球,粒度约20μm,其矫顽力为4998.0Oe,比饱和磁化强度为53.4emu/g,比剩余磁化强度为31.5emu/g。  相似文献   

10.
用简单高效的两步法制备了一种包覆有四氧化三铁的还原石墨烯空心微球(Air@r GO€Fe_3O_4)。两步法包括油包水乳化技术和高温煅烧技术。Air@r GO€Fe_3O_4空心微球的介电损耗和磁损耗优异,使其具有良好的微波吸收性能。空心微球在石蜡中的添加量为33.3%、厚度为2.8 mm的微球在10 GHz处有最小反射率,为-52 d B,反射率小于-10 d B的频率范围为7.5~14.7 GHz。调节各成分的配比和样品厚度可控制空心微球的吸波性能。随着四氧化三铁含量的提高,微球的最小反射率的峰值位置向高频移动。Air@r GO€Fe_3O_4空心微球有吸收频率范围宽、吸收强度大以及吸波性能可调控等优点,使其成为具有潜在应用价值的高性能吸波材料。  相似文献   

11.
以用分散聚合法制备的聚甲基丙烯酸甲酯(PMMA)微球作为牺牲模板,用均相沉淀法制备PMMA/碱式碳酸钇(Y(OH)CO3)复合微球,高温煅烧后得到氧化钇(Y2O3)空心微球,将其与丁基橡胶复合制备了复合橡胶低频高阻尼材料。用傅里叶变换红外光谱分析(FTIR),扫描电子显微镜(SEM),透射电子显微镜(TEM),热重分析仪(TG),X射线衍射分析(XRD)和X射线光电子能谱分析(XPS)等手段对Y2O3空心球的形貌与结构组成进行了表征。结果表明,Y2O3空心球由立方萤石结构的颗粒组成,外空心直径为1μm,壳层的厚度约为80 nm。将Y2O3空心微球和粉体分别作为填料加入丁基橡胶中制备的Y2O3/丁基橡胶复合材料,与加入Y2O3粉体相比,加入Y2O3空心球明显提高了丁基橡胶的阻尼性能,在8、18、28、50、65、90 Hz附近的损耗因子较大。  相似文献   

12.
悬浮聚合法制备聚苯乙烯磁性微球   总被引:2,自引:0,他引:2  
本文以聚乙烯醇/水为介质,苯乙烯为单体,在经3-甲基丙烯酰氧基丙基三甲氧基硅烷(3-MPS)表面修饰的Fe3O4磁性颗粒的存在下,采用悬浮聚合法,制备了聚苯乙烯磁性微球。分别用X-射线衍射(XRD)、原子力显微镜(AFM)、热重分析(TGA)、傅里叶变换红外光谱仪(FTIR)、振动样品磁力计(VSM)等方法对磁性微球的结构和性能进行了表征。实验结果表明,所合成的磁性微球为球型结构,平均粒径约为2μm,尺寸分布较均匀,具有超顺磁性。  相似文献   

13.
通过化学共沉淀法制备Fe3O4纳米粒子,再用油酸钠和十二烷基磺酸钠(SDS)对Fe3O4进行改性,制得稳定的水基磁流体。在自制的磁流体存在下,以氰基丙烯酸正丁酯(BCA)为单体,用微波辐射乳液聚合的方法制备了Fe3O4/聚氰基丙烯酸正丁酯磁性微球。并用X射线衍射仪(XRD),透射电子显微镜(TEM),傅立叶红外光谱仪(FT-IR),振动样品磁强计(VSM)对制备的磁性高分子微球的结构形貌和磁性能进行表征测试。结果表明,在适当的pH值条件下,得到了粒径为150 nm~200 nm,饱和磁化强度为20.23 emμ/g,粒径均一的聚氰基丙烯酸正丁酯磁性微球。  相似文献   

14.
以二水合乙酸锂和钛酸四丁酯为主要原料,采用溶胶-凝胶法制备了Li掺杂的TiO_2粉体,掺杂比例分别为x=0%、2%、4%、6%、8%。采用X射线衍射及扫描电镜测试样品的结构及形貌,结果表明:系列Ti_(1-x)Li_xO_2粉体呈纳米微球颗粒均匀分布,样品均主要表现为锐钛矿结构,随着Li掺杂浓度增加,粉体样品的金红石相逐渐增多,结晶度随着掺杂量增加而逐渐变好;用振动样品磁强计测试样品的磁特性,结果表明:系列粉体样品均表现为抗磁性,且随着掺杂量增加磁化率依次减小。分析结果表明系列Ti_(1-x)Li_xO_2粉体样品所呈现的抗磁性为其本征磁性。  相似文献   

15.
以木薯淀粉(St)和自制纳米表面改性Fe3O4(M)微粒为主要原料,采用反相乳液聚合法制备了磁性木薯淀粉微球(MSt),并通过红外光谱(FT-IR)、X射线衍射(XRD)、透射电镜(TEM)、同步热分析(TG-DSC)和振动样品磁强计(VSM)等手段对磁性木薯淀粉微球进行结构性能分析和反应机理探讨。结果表明,FT-IR分析显示磁性微粒Fe3O4与淀粉成功发生交联反应;TEM和XRD分析显示微球具有以Fe3O4为核淀粉为壳的核壳结构;TG-DSC分析表明微球的热稳定性相比原淀粉略有降低;微球的饱和磁化强度为7.07emu/g,磁化率为3.005×10-6emu/Oe,微球具有磁响应性和超顺磁性。该微球反应历程符合自由基聚合机理。  相似文献   

16.
以NiFe2O4纳米粒子作磁性载体、苯乙烯(ST)、正硅酸乙酯(TEOS)为原料,KH-570为交联剂,采用乳液聚合法制备了聚苯乙烯-SiO2/NiFe2O4磁性微球材料。通过VSM、FT-IR、SEM、TG-DTA、溶剂抽提等方法对磁性微球材料进行了测试。制备的NiFe2O4粒子为面心立方结构,NiFe2O4纳米颗粒及聚苯乙烯-SiO2/NiFe2O4磁性微球具有超顺磁性。聚苯乙烯-SiO2/NiFe2O4磁性微球以SiO2/NiFe2O4为核、PS为壳,通过KH-570接枝到SiO2/NiFe2O4上,核壳间以共价键相接的包覆型纳米粒子,平均直径为100nm左右,具有良好的热稳定性和耐溶剂性能。热重(TG)分析表明,磁性聚苯乙烯微球磁性物质质量分数为28.8%。  相似文献   

17.
用微乳液聚合法制备了粒径均匀的聚苯乙烯-丙烯酸高分子微球P(St-co-AA),与共沉淀法所制纳米Fe3O4通过静电作用,使两种微球自组装成高磁含量的磁性微球[Fe3O4/P(St-co-AA)].采用XRD、TEM、SEM、IR等对样品进行表征,采用VSM对样品进行磁性能测试.结果表明P(St-co-AA)平均粒径约为70nm,表面含有羧基;所得磁粉为Fe3O4单相,平均粒径约为10nm.磁性能测试表明,当外加磁场为1.5×106/π(A/m)时,磁化强度达到饱和,饱和磁化强度为69A·m2·kg-1;自组装所制高分子磁性微球为球形,平均粒径约800nm,磁粉含量为15.8%.研究表明,pH值、搅拌等对复合磁性微球的形成有重要影响.  相似文献   

18.
首先以单分散性良好的PSA为模板,用还原铁盐方法生成PSA@Fe3O4核壳结构复合微球。再将生成的粒子加入到四氢呋喃(THF)溶剂中,使PSA模板溶解,得到Fe3O4空心微球。在一定条件下将葡聚糖吸附在磁性微球表面,得到吸附有高分子的磁性微球。采用X射线衍射(XRD)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FT-IR)和热重分析(TGA)对制备的微球进行表征。粒子大小均匀,平均直径在50nm左右,Fe3O4层厚约为5nm。这种新颖的磁性高分子微球具有纳米级的尺寸和独特的空心结构。在生物医学领域特别是药物输运上可能具有广阔的应用前景。  相似文献   

19.
采用磺酸基团官能化中空二氧化硅微球为模板,通过化学共沉淀法,将尖晶石铁氧体(MeFe2O4)包覆在中空二氧化硅微球表面,制备出二氧化硅/MeFe2O4中空复合微球。利用TEM、XRD和样品振动磁强计对中空复合微球的形貌、结构和磁性能进行表征。实验结果表明,通过调节三价铁盐与二价金属离子之间的比例可以将尖晶石铁氧体的粒径范围控制在15nm以下。所制备的复合中空微球具有优良的软磁性。当金属离子总浓度为0.10mol/L时,复合微球的饱和磁化强度可达9.75Am2/kg。  相似文献   

20.
采用液相还原的方法,在碱性环境下使用FeCl2.4H2O和氧化石墨作为前驱体,制备Fe3O4微球附载的石墨烯复合材料。通过调节氧化石墨和铁盐的质量比制备得到不同组分的Fe3O4/石墨烯复合粉体。使用场发射电子扫描显微镜(FESEM)、X射线衍射仪(XRD)、振动样品磁强计(VSM)和四探针电阻仪等仪器分析了产物的形貌、物相、磁性能和导电性能。结果表明Fe3O4/石墨烯复合粉体中Fe3O4微球在石墨烯表面分散均匀,且Fe3O4结晶良好,为立方晶系的尖晶石型。该复合粉体具有高的磁性能和良好的导电性能,饱和磁化强度和电导率分别达到72emu/g和0.53S/cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号