首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract— A low‐cost active‐matrix backplane using non‐laser polycrystalline silicon (poly‐Si) having inverse‐staggered TFTs with amorphous‐silicon (a‐Si) n+ contacts has been developed. The thin‐film transistors (TFTs) have a center‐offset gated structure to reduce the leakage current without scarifying the ON‐currents. The leakage current of the center‐offset TFTs at Vg = ?10 V is two orders of magnitude lower than those of the non‐offset TFTs. The center‐offset length of the TFTs was 3 μm for both the switching and driving TFTs. A 2.2‐in. QQVGA (1 60 × 1 20) active‐matrix organic light‐emitting‐diode (AMOLED) display was demonstrated using conventional 2T + 1C pixel circuits.  相似文献   

2.
Abstract— Amorphous‐oxide thin‐film‐transistor (TFT) arrays have been developed as TFT backplanes for large‐sized active‐matrix organic light‐emitting‐diode (AMOLED) displays. An amorphous‐IGZO (indium gallium zinc oxide) bottom‐gate TFT with an etch‐stop layer (ESL) delivered excel lent electrical performance with a field‐effect mobility of 21 cm2/V‐sec, an on/off ratio of >108, and a subthreshold slope (SS) of 0.29 V/dec. Also, a new pixel circuit for AMOLED displays based on amorphous‐oxide semiconductor TFTs is proposed. The circuit consists of four switching TFTs and one driving TFT. The circuit simulation results showed that the new pixel circuit has better performance than conventional threshold‐voltage (VTH) compensation pixel circuits, especially in the negative state. A full‐color 19‐in. AMOLED display with the new pixel circuit was fabricated, and the pixel circuit operation was verified in a 19‐in. AMOLED display. The AMOLED display with a‐IGZO TFT array is promising for large‐sized TV because a‐IGZO TFTs can provide a large‐sized backplane with excellent uniformity and device reliability.  相似文献   

3.
Abstract— A novel active‐matrix organic light‐emitting‐diode (AMOLED) display employing a new current‐mirror pixel circuit, which requires four‐poly‐Si TFTs and one‐capacitor and no additional signal lines, has been proposed and sucessfully fabricated. The experimental results show that a new current mirror can considerably compensate luminance non‐uniformity and scale down a data current more than a conventional current‐mirror circuit in order to reduce the pixel charging time and increase the minimum data current. Compared with a conventional two‐TFT pixel, the luminance non‐uniformity induced by the grain boundaries of poly‐Si TFTs can be decreased considerably from 41% to 9.1%.  相似文献   

4.
Abstract— An active‐matrix organic light‐emitting diode (AMOLED) display driven by hydrogenated amorphous‐silicon thin‐film transistors (a‐Si:H TFTs) on flexible, stainless‐steel foil was demonstrated. The 2‐TFT voltage‐programmed pixel circuits were fabricated using a standard a‐Si:H process at maximum temperature of 280°C in a bottom‐gate staggered source‐drain geometry. The 70‐ppi monochrome display consists of (48 × 4) × 48 subpixels of 92 ×369 μm each, with an aperture ratio of 48%. The a‐Si:H TFT pixel circuits drive top‐emitting green electrophosphorescent OLEDs to a peak luminance of 2000 cd/m2.  相似文献   

5.
Abstract— The direct voltage programming of active‐matrix organic light‐emitting‐diode (AMOLED) pixels with n‐channel amorphous‐Si (a‐Si) TFTs requires a contact between the driving TFT and the OLED cathode. Current processing constraints only permit connecting the driving TFT to the OLED anode. Here, a new “inverted” integration technique which makes the direct programming possible by connecting the driver n‐channel a‐Si TFT to the OLED cathode is demonstrated. As a result, the pixel drive current increases by an order of magnitude for the same data voltages and the pixel data voltage for turn‐on drops by several volts. In addition, the pixel drive current becomes independent of the OLED characteristics so that OLED aging does not affect the pixel current. Furthermore, the new integration technique is modified to allow substrate rotation during OLED evaporation to improve the pixel yield and uniformity. The new integration technique is important for realizing active‐matrix OLED displays with a‐Si technology and conventional bottom‐anode OLEDs.  相似文献   

6.
Abstract— Inverted‐staggered amorphous In‐Ga‐Zn‐O (a‐InGaZnO) thin‐film transistors (TFTs) were fabricated and characterized on glass substrates. The a‐InGaZnO TFTs exhibit adequate field‐effect mobilities, sharp subthreshold slopes, and very low off‐currents. The current temperature stress (CTS) on the a‐InGaZnO TFTs was performed, and the effect of stress temperature (TSTR), stress current (ISTR), and TFT biasing condition on their electrical stability was investigated. Finally, SPICE modelling for a‐InGaZnO TFTs was developed based on experimental data. Several active‐matrix organic light‐emitting‐display (AMOLED) pixel circuits were simulated, and the potential advantages of using a‐InGaZnO TFTs were discussed.  相似文献   

7.
Abstract— A new driving scheme for active‐matrix organic light‐emitting diodes (AMOLED) displays based on voltage programming is proposed. While conventional voltage drivers have a trade‐off between speed and accuracy, the new scheme is inherently fast and accurate. Based on the new driving scheme, a fast pixel circuit is designed using amorphous‐silicon (a‐Si) thin‐film transistors (TFTs). As the simulation results indicate, this pixel circuit can compensate the threshold‐voltage shift (VT shift) of the driver transistors. This pixel can be programmed in just 10 μsec, and it can compensate the threshold‐voltage shifts over 5 V with an error rate of less than 5% for a 1 ‐μA pixel current.  相似文献   

8.
Abstract— A full‐color 12.1‐in.WXGA active‐matrix organic‐light‐emitting‐diode (AMOLED) display was, for the first time, demonstrated using indium‐gallium‐zinc oxide (IGZO) thin‐film transistors (TFTs) as an active‐matrix backplane. It was found that the fabricated AMOLED display did not suffer from the well‐known pixel non‐uniformity in luminance, even though the simple structure consisting of two transistors and one capacitor was adopted as the unit pixel circuit, which was attributed to the amorphous nature of IGZO semiconductors. The n‐channel a‐IGZO TFTs exhibited a field‐effect mobility of 17 cm2/V‐sec, threshold voltage of 1.1 V, on/off ratio >109, and subthreshold gate swing of 0.28 V/dec. The AMOLED display with a‐IGZO TFT array is promising for large‐sized applications such as notebook PCs and HDTVs because the a‐IGZO semiconductor can be deposited on large glass substrates (larger than Gen 7) using the conventional sputtering system.  相似文献   

9.
Abstract— Active‐matrix organic light‐emitting‐diode (AMOLED) displays are now entering the marketplace. The use of a thin‐film‐transistor (TFT) active matrix allows OLED displays to be larger in size, higher in resolutions and lower in power dissipation than is possible using a conventional passive matrix. A number of TFT active‐matrix pixel circuits have been developed for luminance control, while correcting for initial and electrically stressed TFT parameter variations. Previous circuits and driving methods are reviewed. A new driving method is presented in which the threshold‐voltage (Vt) compensation performance, along with various circuit improvements for amorphous‐silicon (a‐Si) TFT pixel circuits using voltage data, are discussed. This new driving method along with various circuit improvements is demonstrated in a state‐of‐the‐art 20‐in. a‐Si TFT AMOLED HDTV.  相似文献   

10.
Abstract— New pixel‐circuit designs for active‐matrix organic light‐emitting diodes (AMOLEDs) and a new analog buffer circuit for the integrated data‐driver circuit of active‐matrix liquid‐crystal displays (AMLCDs) and AMOLEDs, based on low‐temperature polycrystalline‐silicon thin‐film transistors (LTPS‐TFTs), were proposed and verified by SPICE simulation and measured results. Threshold‐voltage‐compensation pixel circuits consisting of LTPS‐TFTs, an additional control signal line, and a storage capacitor were used to enhance display‐image uniformity. A diode‐connected concept is used to calibrate the threshold‐voltage variation of the driving TFT in an AMOLED pixel circuit. An active load is added and a calibration operation is applied to study the influences on the analog buffer circuit. The proposed circuits are shown to be capable of minimizing the variation from the device characteristics through the simulation and measured results.  相似文献   

11.
Abstract— A new voltage‐driving active‐matrix organic light‐emitting diode (AMOLED) pixel circuit is proposed to improve the display image‐quality of AMOLED displays. Because OLEDs are current‐driven devices, the I × R voltage drop in the power lines is evitable. Accordingly, the I × R voltage‐drop compensation scheme should be included in the pixel‐driving method when a voltage‐compensation method is used. The proposed pixel was designed for the compensation of an I × R voltage drop in the power lines as well as for the compensation of the threshold‐voltage non‐uniformity of low‐temperature polycrystalline‐silicon thin‐film transistors (LTPS TFTs). In order to verify the compensation ability of the proposed pixel, SPICE simulation was performed and compared with those of other conventional pixels. When the Vss voltage varies from 0 to 1 V, the drain current of the proposed pixel decreased by under 1% while that of conventional Vth compensation methods without Vss compensation decreased by over 60%. 2.2‐in. QCIF+ full‐color AMOLED displays, which employ the proposed pixel, have been also developed. It was verified by comparison of the display image quality with a conventional panel that our proposed panel successfully overcame the voltage‐drop problems in the power lines.  相似文献   

12.
Abstract— A 14.1‐in. AMOLED display using nanocrystalline silicon (nc‐Si) TFTs has been developed. Nanocrystalline silicon was deposited using conventional 13.56‐MHz plasma‐enhanced chemical vapor deposition (PECVD). Detailed thin‐film characterization of nc‐Si films was followed by development of nc‐Si TFTs, which demonstrate a field‐effect mobility of about 0.6–1.0 cm2/V‐sec. The nc‐Si TFTs show no significant shift in threshold voltage when over 700 hours of constant current stress is applied, indicating a stable TFT backplane. The nc‐Si TFTs were successfully integrated into a 14.1‐in. AMOLED display. The display shows no significant current decrease in the driving TFT of the 2T‐1cap circuit because the TFTs are highly stable. In addition to the improved lifetime of AMOLED displays, the development of nc‐Si TFTs using a conventional 13.56‐MHz PECVD system offers considerable cost advantages over other laser and non‐laser polysilicon‐TFT technologies for large‐sized AMOLEDs.  相似文献   

13.
Abstract— We have developed an integrated poly‐Si TFT current data driver with a data‐line pre‐charge function for active‐matrix organic light‐emitting diode (AMOLED) displays. The current data driver is capable of outputting highly accurate (±0.8%) current determined by 6‐bit digital input data. A novel current‐programming approach employing a data‐line pre‐charge function helps achieve accurate current programming at low brightness. A 1.9‐in. 120 × 136‐pixel AMOLED display using these circuits was demonstrated.  相似文献   

14.
Abstract— High‐performance solution‐processed oxide‐semiconductor (OS) thin‐film transistors (TFTs) and their application to a TFT backplane for active‐matrix organic light‐emitting‐diode (AMOLED) displays are reported. For this work, bottom‐gated TFTs having spin‐coated amorphous In‐Zn‐O (IZO) active layers formed at 450°C have been fabricated. A mobility (μ) as high as 5.0 cm2/V‐sec, ?0.5 V of threshold voltage (VT), 0.7 V/dec of subthreshold swing (SS), and 6.9 × 108 of on‐off current ratio were obtained by using an etch‐stopper (ES) structure TFT. TFTs exhibited uniform characteristics within 150 × 150‐mm2 substrates. Based on these results, a 2.2‐in. AMOLED display driven by spin‐coated IZO TFTs have also been fabricated. In order to investigate operation instability, a negative‐bias‐temperature‐stress (NBTS) test was carried out at 60°C in ambient air. The IZO‐TFT showed ?2.5 V of threshold‐voltage shift (ΔVT) after 10,800 sec of stress time, comparable with the level (ΔVT = ?1.96 V) of conventional vacuum‐deposited a‐Si TFTs. Also, other issues regarding solution‐processed OS technology, including the instability, lowering process temperature, and printable devices are discussed.  相似文献   

15.
Abstract— Flexible AMOLED displays pose unique opportunities and challenges for a‐Si. Leveraging the existing a‐Si process infrastructure is the fastest and lowest‐cost route to flexible AMOLEDs. However, the displays must maintain high performance, long lifetimes, and high uniformity despite low‐temperature processes and mechanical stress. New pixel circuits and drive schemes shown here demonstrate that high‐performance flexible AMOLED displays are possible using well‐established a‐Si technology.  相似文献   

16.
Abstract— A new threshold‐voltage compensation technique for polycrystal line‐silicon thin‐film transistors (poly‐Si TFTs) used in active‐matrix organic light‐emitting‐diode (AMOLED) display pixel circuits is presented. The new technique was applied to a conventional 2‐transistor—1‐capacitor (2T1C) pixel circuit, and a new voltage‐programmed pixel circuit (VPPC) is proposed. Theoretically, the proposed pixel is the fastest pixel with threshold‐voltage compensation reported in the literature because of the new compression technique implemented with a static circuit block, which does not affect the response time of the conventional 2T1C pixel circuit. Furthermore, the new pixel exhibits all the other advantages of the 2T1C pixel, such as the simplicity of the peripheral drivers and improves other characteristics, such as its behavior in the temperature variations. The verification of the proposed pixel is made through simulations with HSpice. In order to obtain realistic simulations, device parameters were extracted from fabricated low‐temperature poly‐Si (LTPS) TFTs.  相似文献   

17.
Abstract— Large‐sized active‐matrix organic light‐emitting diode (AMOLED) displays require high‐frame‐rate driving technology to achieve high‐quality 3‐D images. However, higher‐frame‐rate driving decreases the time available for compensating Vth in the pixel circuit. Therefore, a new method needs to be developed to compensate the pixel circuit in a shorter time interval. In this work, image quality of a 14‐in. quarter full‐high‐definition (qFHD) AMOLED driven at a frame rate of over 240 Hz was investigated. It was found that image degradation is related to the time available for compensation of the driving TFT threshold voltage. To solve this problem, novel AMOLED pixel circuits for high‐speed operation are proposed to compensate threshold‐voltage variation at frame rates above 240 Hz. When Vth is varied over ±1.0 V, conventional pixel circuits showed current deviations of 22.8 and 39.8% at 240 and 480 Hz, respectively, while the new pixel circuits showed deviations of only 2.6 and 5.4%.  相似文献   

18.
Abstract— Active‐matrix organic light‐emitting diode (AMOLED) displays have gained wide attention and are expected to dominate the flat‐panel‐display industry in the near future. However, organic light‐emitting devices have stringent demands on the driving transistors due to their current‐driving characteristics. In recent years, the oxide‐semiconductor‐based thin‐film transistors (oxide TFTs) have also been widely investigated due to their various benefits. In this paper, the development and performance of oxide TFTs will be discussed. Specifically, effects of back‐channel interface conditions on these devices will be investigated. The performance and bias stress stability of the oxide TFTs were improved by inserting a SiOx protection layer and an N2O plasma treatment on the back‐channel interface. On the other hand, considering the n‐type nature of oxide TFTs, 2.4‐in. AMOLED displays with oxide TFTs and both normal and inverted OLEDs were developed and their reliability was studied. Results of the checkerboard stimuli tests show that the inverted OLEDs indeed have some advantages due to their suitable driving schemes. In addition, a novel 2.4‐in. transparent AMOLED display with a high transparency of 45% and high resolution of 166 ppi was also demonstrated using all the transparent or semi‐transparent materials, based on oxide‐TFT technologies.  相似文献   

19.
High‐performance solution‐based n‐type metal oxide thin‐film transistors (TFTs), fabricated directly on polyimide foil at a post‐annealing temperature of only 250 °C, are realized and reported. Saturation mobilities exceeding 2 cm²/(Vs) and on‐to‐off current ratios up to 108 are achieved. The usage of these oxide n‐type TFTs as the pixel drive and select transistors in future flexible active‐matrix organic light‐emitting diode (AMOLED) displays is proposed. With these oxide n‐type TFTs, fast and low‐voltage n‐type only flexible circuitry is demonstrated. Furthermore, a complete 8‐bit radio‐frequency identification transponder chip on foil has been fabricated and measured, to prove that these oxide n‐type TFTs have reached already a high level of yield and reliability. The integration of the same solution‐based oxide n‐type TFTs with organic p‐type TFTs into hybrid complementary circuitry on polyimide foil is demonstrated. A comparison between both the n‐type only and complementary elementary circuitry shows the high potential of this hybrid complementary technology for future line‐drive circuitry embedded at the borders of flexible AMOLED displays.  相似文献   

20.
Abstract— The characteristics of OLED backplanes including the intrinsic properties of a‐Si TFTs and LTPS TFTs will be reviewed. While LTPS TFTs reveal satisfactory stability in AMOLED‐display applications, a‐Si AMOLEDs show better uniformity and are capable of driving OLEDs. However, the stability of a‐Si TFTs under long‐term operation is still unacceptable and remains to be the key issue constraining the commercialization of a‐Si TFT AMOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号