首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
概述影响凝胶聚合物电解质性能的的因素;重点介绍P(VDF-HFP)多孔凝胶聚合物电解质作为锂离子电池聚合物电解质的研究进展,包括该类聚合物电解质的的制备方法及其离子电导率;展望了凝胶聚合物电解质在锂离子电池中的应用前景.  相似文献   

2.
利用互穿网络技术通过乳液聚合法制备环境友好型聚合物电解质膜,采用FTIR、XPS、SEM、TEM和TG等技术对样品结构和形貌进行表征;通过CV、EIS和充放电测试结果分析样品的电化学性能。结果表明:当m(AMPS):m(BA):m(AA):m(AN)=1:3:2:2时,互穿网络聚合物电解质膜的离子电导率为0.88mS/cm;聚合物膜的抗拉强度为7.53MPa,断裂伸长率为90.4%;聚合物膜的吸液量为150%,热收缩率为4%,表现出最佳的力学性能和电化学性能。该互穿网络聚合物电解质膜与目前锂离子电池主流的正负极材料具有较好的相容性,普适性较好。以LiCoO2为正极,石墨为负极,0.2C倍率下,首次放电比容量分别为141.3mAh/g和347.1mAh/g,100次循环后容量保持率分别为94.8%和85.0%;2C倍率下,放电比容量为119.8mAh/g和239.0mAh/g。关键词:聚合物电解质膜;互穿网络技术;环境友好;锂离子电池  相似文献   

3.
以聚乙二醇(PEG)、有机硅氧烷(OFX)、异佛尔酮二异氰酸酯(IPDI)为主要原料,制备了一系列水性聚氨酯,并与双(三氟甲基磺酰)亚胺锂(Li TFSI)复合,得到一系列全固态聚合物薄膜。通过拉伸性能测试、红外光谱、热重分析和电导率测试等研究了其结构与性能的关系。将制备的聚合物电解质膜用于全固态锂离子电池的组装,测试了电池的性能。结果表明:适量引入有机硅氧烷可改善聚合物电解质膜的力学性能和电化学性能;当PEG与有机硅氧烷质量比为3:1时聚合物电解质膜的综合性能最佳,80℃时电导率为6.24×10~(–4)S/cm;以磷酸铁锂为正极制备的全固态锂离子电池在0.2C电流80℃时放出131 mA·h/g的比容量。  相似文献   

4.
一种新型聚合物电解质中离子传递及界面性质研究   总被引:2,自引:0,他引:2  
合成了聚(甲基丙烯酸甲酯-丙烯腈-甲基丙烯酸锂)(简记为PMAML)聚合物基质材料,以PMAML和聚偏氟 乙烯混合物为基质制备了新型复合聚合物电解质,其中增塑剂为碳酸乙烯酯和碳酸二甲酯,锂盐是LiBF4。用刮刀 在玻璃板上涂膜得到取合物膜,把聚合物基质膜在电解质溶液中浸渍后成为聚合物电解质膜。采用限制扩散方法测 试了电解质中离子的扩散系数,由稳态极化法测得了迁移数。所制聚合物电解质中锂离子的扩散系数和迁移数分别为 2.67×10-7cm2·s-1和0.53。通过交流阻抗技术研究了聚合物电解质与电极间界面性质,Li/GPE/Li的界面阻抗随放置 时间延长而增大,Li/GPE/MPCF的界面阻抗随电极的电位降低而减小。组装了聚合物电解质锂离子电池,测试结果表 明,该聚合物电解质具有较好的离子传输性质和电化学性能,能用作锂离子电池的电解质。  相似文献   

5.
中国专利     
聚合物改性聚烯烃锂离子电池隔膜及其制备方法本发明涉及的聚合物改性聚烯烃锂离子电池隔膜由聚烯烃微孔膜一面或双面复合一层薄膜,复合薄膜厚度为1~20μm,经溶胶状聚合物涂布而成。本发明改善了聚合物对隔膜的润湿性及界面性质,电池隔膜具有良好的润湿性、热关闭效应和热收缩小的特性。用本发明所制隔膜组装的电池具有良好的充、放电循环性能,改善了正负极材料与隔膜间的界面性质。  相似文献   

6.
现场聚合制备锂离子电池用凝胶聚合物电解质研究进展   总被引:1,自引:0,他引:1  
高比能量锂离子电池是未来储能器件的发展方向.凝胶聚合物锂离子电池因易于加工并克服了以往液态锂离子电池因漏液而造成的安全性问题,成为近年来的研究热点.综述了目前凝胶聚合物电解质制备工艺中最受关注的现场聚合技术,介绍了反应原理、工艺路线、成品性能等,并展望了现场聚合工艺作为新兴锂离子电池生产技术的发展趋势.  相似文献   

7.
固态聚合物电解质具有高安全性、高成膜性和黏弹性等优点,并与电极具有良好的接触性和相容性,是实现高安全性和高能量密度固态Li+电池的重要电解质体系。然而聚合物电解质室温离子电导率较低(10-8~10-6 S·cm-1),不能满足固态聚合物电池在常温运行的需求。因此,在提高离子电导率、机械强度和电化学稳定性等本征属性的基础上,同时探究改善电解质/电极的界面处及电极内部的离子输运是研发固态聚合物Li+电池面临的关键问题。主要从改性聚合物电解质用以提高Li+电池电化学性能的角度出发,综述了凝胶聚合物电解质、全固态聚合物电解质和复合固态电解质中的离子输运机制及其关键参数,总结了近年来聚合物电解质的最新研究进展和未来的发展方向。  相似文献   

8.
电池隔膜在锂离子电池组件中起着桥连作用,综述了近年来以微孔聚烯烃、无纺布、有机/无机复合材料以及凝胶聚合物电解质为膜材料的锂离子电池隔膜研究现状,根据隔膜制备的原理和特点,对最为常见的干法、湿法、静电纺丝法制备膜材料做出了具体的概括,并列举了最新的湿法抄造、熔喷纺丝和相转化制备工艺,展望了开发锂离子电池隔膜新材料和新工艺的发展方向。  相似文献   

9.
凝胶型聚合物锂离子电池现场聚合工艺研究进展   总被引:1,自引:0,他引:1  
郭来宾  高虹 《辽宁化工》2007,36(10):700-704
凝胶型聚合物锂离子电池的现场聚合工艺已经成为聚合物锂离子电池领域的一个研究热点。主要介绍了室温现场聚合、热引发现场聚合、辐射引发现场聚合及电化学引发现场聚合等几种聚合物锂离子电池的现场聚合工艺,并对这几种现场聚合工艺的工艺过程、聚合物体系、聚合反应原理、所制聚合物电解质及电池性能方面进行了总结和评述,比较了各种工艺的优缺点,并对聚合物锂离子电池现场聚合工艺的发展前景进行了预测。  相似文献   

10.
基于磷酸掺杂聚苯并咪唑膜(PA/PBI)的高温聚合物电解质膜燃料电池具有高的输出功率和优异的稳定性,然而PBI膜昂贵的价格和复杂的制备工艺限制了高温聚合物电解质膜燃料电池的商业化应用。本研究以成本低和制备工艺简单的聚醚砜-聚乙烯吡咯烷酮(PES-PVP)膜的商业化应用为目标,小规模制备了幅宽为40 cm的PES-PVP复合膜,证实了流延法放大制备PES-PVP复合膜的可行性。PES-PVP膜中每个PVP重复单元的吸附量达4.9个磷酸(PA)分子,且在180℃的质子电导率达85 mS·cm-1。此外,尺寸为165 cm2的PA/PES-PVP高温膜电极在150℃的输出功率达0.19 W·cm-2@0.6 V,与同尺寸的商业化PA/PBI高温膜电极的输出功率相当,并在近3000 h的寿命测试中展示出良好的稳定性。最后,将PA/PES-PVP高温膜电极(单片有效面积200 cm2)组装高温膜燃料电池短堆,其中基于3片膜电极的短堆展现出良好的电堆启停稳定性;基于20片膜电极电堆的峰值功率达1.15 kW。以上结果表明所制备的PA/PES-PVP是一种性能优良、价格便宜的高温聚合物电解质膜材料,并且基于该膜材料组装的高温聚合物电解质膜电池和电堆性能优异。本研究工作为高温聚合物电解质膜燃料电池关键材料和电堆的国产化提供了研究基础。  相似文献   

11.
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based gel polymer electrolyte (GPE) is considered one of the promising candidate electrolytes in the polymer lithium ion battery (LIB) because of its free standing, shape versatility, security, flexibility, lightweight, reliability, and so on. However, the pristine PVDF-HFP GPE cannot still meet the requirement of large-scale LIBs and other electrochemical devices due to its relatively low ionic conductivity and deterioration of mechanical strength caused by the incorporation of organic liquid electrolyte into the polymer matrix as well as high cost. In order to overcome above deficiencies of PVDF-HFP based GPE, ultraviolet (UV)-curable semi-interpenetrating polymer network is designed and synthesized through UV-irradiation technique, and the as-prepared semi-interpenetrating matrix is constituted by pentaerythritol tetracrylate polymer network and PVDF-HFP. The ionic conductivity of the optimized GPE is as high as 5 × 10−4 S/cm and electrochemical window is up to 4.8 V at room temperature. Especially, the LIB prepared by GPE shows the high initial discharge specific capacity of 151 mAh/g at 0.5 C and good rate capability. Therefore, the semi-interpenetrating GPE based on PVDF-HFP exhibits a promising prospect for the application of rechargeable LIBs.  相似文献   

12.
A novel porous membrane of chemically modified polyvinyl butyral (mPVB), with improved thermal properties and chemical stability for lithium ion battery applications, is successfully synthesized by utilizing the chain extension reaction of the OH units from PVB. The porous mPVB membranes are obtained via the tape casting and phase inversion method. The corresponding gel polymer electrolyte (GPE) is achieved by immersing the as‐prepared membranes in the liquid electrolyte. The electrochemical performances of the GPE show that the mPVB membranes have the features of good uniformity, high porosity ( ≈ 90%), great thermal stability, and high mechanical strength. Moreover, the GPE exhibits good chemical stability, a wide electrochemical window, as well as high ionic conductivity ( ≈ 1.21 × 10?3 S cm?1). A test of a Li/GPE/LiFePO4 battery cell shows a capacity of 147.7 mAh g?1 and excellent cycling stability, demonstrating the great potential of the mPVB‐based GPE for lithium ion battery applications.  相似文献   

13.
张卫新  赵飞  王强  杨则恒 《化工学报》2010,61(10):2719-2725
以自制Li3PO4为前驱体,在水热条件下与FeSO4.7H2O反应制备得到纯相LiFePO4,并通过碳包覆和Cu2+掺杂对其进行了有效改性,获得了适合高电流密度放电的LiFePO4正极材料。采用X射线衍射(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对产物进行了物相和形貌表征。实验研究了水热反应温度对产物的形貌及其电化学性能的影响,同时探讨了掺杂Cu2+对材料常温和低温电化学性能的影响。结果表明:在200℃、24h水热条件下制得的产物,经碳包覆后的复合材料LiFePO4/C(LFP200/C),以1C(150mA.g-1)电流放电,放电比容量达140.7mAh.g-1;对材料进行Cu2+掺杂得到的Cu-LFP200/C材料的放电比容量及倍率性能得到进一步提高,常温下1C倍率的放电比容量为150.3mAh.g-1,10C倍率的放电比容量为108.7mAh.g-1,在-30℃条件下的放电比容量依然达到97mAh.g-1。  相似文献   

14.
The poly(propylene carbonate maleate) (PPCMA) was synthesized by the terpolymerization of carbon dioxide, propylene oxide, and maleic anhydride. The PPCMA polymer can be readily crosslinked using dicumyl peroxide (DCP) as crosslinking agent and then actived by absorbing liquid electrolyte to fabricate a novel PPCMA gel polymer electrolyte for lithium‐ion battery. The thermal performance, electrolyte uptake, swelling ratio, ionic conductivity, and lithium ion transference number of the crosslinked PPCMA were then investigated. The results show that the Tg and the thermal stability increase, but the absorbing and swelling rates decrease with increasing DCP amount. The ionic conductivity of the PPCMA gel polymer electrolyte firstly increases and then decreases with increasing DCP ratio. The ionic conductivity of the PPCMA gel polymer electrolyte with 1.2 wt % of DCP reaches the maximum value of 8.43 × 10−3 S cm−1 at room temperature and 1.42 × 10−2 S cm−1 at 50°C. The lithium ion transference number of PPCMA gel polymer electrolyte is 0.42. The charge/discharge tests of the Li/PPCMA GPE/LiNi1/3Co1/3Mn1/3O2 cell were evaluated at a current rate of 0.1C and in voltage range of 2.8–4.2 V at room temperature. The results show that the initial discharge capacity of Li/PPCMA GPE/LiNi1/3Co1/3Mn1/3 O2 cell is 115.3 mAh g−1. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A composite polymer electrolyte, formed by dispersing into a poly(ethylene oxide)-lithium salt matrix two additives, i.e. calyx(6)pyrrole, (CP) acting as an anion trapper and superacid zirconia, S-ZrO2 acting as a conductivity promoter, has been tested as a separator in a new type of rechargeable lithium battery using lithium iron phosphate as the cathode. The choice of the electrolyte was motivated by its favourable transport properties both in terms of lithium ion transference number and of total ionic conductivity. The choice of the cathode was motivated by the value of its operating voltage which falls within the stability window of the electrolyte. The performance of the battery was determined by cycling tests carried out at various rates and at various temperatures. The results demonstrate the good rate capability of the battery which can operate at high charge-discharge efficiency even at 1 C rate and that it can be cycled at 90 °C with a satisfactory initial capacity of the order of 90 mAh g−1. These values outline the practical relevance of the composite electrolyte membrane and of its use as separator in a lithium battery. H. H. Sumathipala—On leave from Department of Physics University of Kelaniya, Kelaniya, Sri Lanka.  相似文献   

16.
A study of the electrochemical properties of a PEO-based polymer electrolyte with nanometric ZrO2 as ceramic filler has been carried out in order to confirm an earlier reported model dealing with the role of ceramic fillers within PEO-based polymer electrolytes as components that enhance such properties as conductivity, lithium transference number, compatibility with lithium metal electrodes and cyclability. A prototype of a lithium polymer battery, based on a membrane made from a nanocomposite polymer electrolyte doped with ZrO2, utilizing LiFePO4 + 1%Ag as cathode, has been assembled and galvanostatically cycled, resulting in excellent performance at temperatures ranging from 100 °C to 60 °C (close to the crystallization temperature of PEO).  相似文献   

17.
This paper reported on a new gel polymer electrolyte (GPE) based on polyethylene (PE) non-woven fabric supported poly(acrylonitrile-vinyl acetate) (P(AN-VAc)/PE) membrane for lithium ion battery use. The preparation and performances of the P(AN-VAc)/PE membrane and its GPE based on 1 M LiPF6 in dimethyl carbonate/diethylene carbonate/ethylene carbonate (1:1:1 in volume) were investigated with a comparison of the unsupported P(AN-VAc) membrane. It is found that the P(AN-VAc)/PE membrane shows better mechanical strength and pore structure for electrolyte uptake than the P(AN-VAc) membrane, and subsequently the GPE based on P(AN-VAc)/PE exhibits higher ionic conductivity and electrochemical stability on cathode than the GPE based on P(AN-VAc). With the support of the non-woven fabric, the ionic conductivity of the GPE at room temperature increases from 1.4 to 3.8 mS cm−1, the oxidation decomposition potential of the GPE on a stainless steel is improved from 5.0 to 5.6 V (vs. Li/Li+). The mesocarbon microbeads (MCMB)/LiMn2O4 battery using P(AN-VAc)/PE as separator retains 94% of its initial discharge capacity after 100 cycles at C/2 rate, showing that the P(AN-VAc)/PE membrane is a possible alternative to the expensive separator for current liquid lithium ion battery.  相似文献   

18.
Polymerized ionic liquids (PILs) having guanidinium cations with different counter‐anions, such as PF6? and N(CF3SO2)2? (TFSI?), were synthesized by copolymerization of a guanidinium ionic liquid monomer with methyl acrylate followed by an anion exchange reaction. Furthermore, incorporating a guanidinium ionic liquid, LiTFSI salt and nano‐size SiO2, a quaternary gel polymer electrolyte based on one of the PILs as the polymer host was prepared. The quaternary gel polymer electrolyte was chemically stable even at a higher temperature of 80 °C in contact with the lithium anode. In particular, the electrolyte exhibited high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. Li/LiFePO4 batteries with the quaternary gel polymer electrolyte at 80 °C had capacities of 140 and 130 mA h g?1 respectively at 0.1 and 0.2 C current rates. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Lithium ion conducting membranes are the key materials for lithium batteries. The lithium ion conducting gel polymer electrolyte membrane (Li-GPEM) based on porous poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix and cross-linked PEG network is prepared by a typical phase inversion process. By immersing the porous PVDF-HFP membrane in liquid electrolyte containing poly(ethylene glycol) diacrylate (PEGDA) and an initiator to absorb the liquid electrolyte at 25°C, and then thermally cross-linking at 60°C, the Li-GPEM is fabricated successfully. The measurements on its weight loss, mechanical and electrochemical properties reveal that the obtained Li-GPEM has better overall performance than the liquid and blend gel systems used as conductive media in lithium batteries. The ionic conductivity of the fabricated Li-GPEM can reach as high as 2.25 × 10-3 S/cm at 25°C.  相似文献   

20.
In this study, the composite polymer was prepared by blending poly(ethylene oxide) (PEO) and POPM (the copolymer of methyl methacrylate [MMA] and organically modified palygorskite), and then the composite polymer based membrane was obtained by phase-inversion method. The scanning electron microscopy results showed that the composite polymer membrane has a three-dimensional network structure. X-ray diffraction results indicated that the crystalline region of PEO is disappeared when introduction of a certain amount of the PEO. Meanwhile, the elongation of composite polymer membrane increased when increasing PEO concentration, but the value of tensile strength of PEO-POPM membrane decreased. When the mass fraction of PEO was 24%, the porosity and maximum value of ionic conductivity of the composite polymer membrane were 54% and 2.41 mS/cm, respectively. The electrochemical stability window of Li/gel composite polymer electrolyte/stainless steel batteries was close to 5.3 V (vs. Li+/Li), and the battery of Li/gel composite polymer electrolyte/LiFePO4 showed good cycling performance and the discharge capacity of the battery were between 169.8 and 155 mAh/g. Meanwhile, the Coulombic efficiency of the battery maintained over 95% during the 80 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号