首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用各向异性的湿法刻蚀和侧墙隔离技术实现了发射极金属和基极金属的自对准,采用该自对准技术成功地研制出了自对准结构的AlGaAs/GaAs异质结双极晶体管,器件直流电流增益大于20,电流增益截止频率fT大于30GHz,最高振荡频率fmax大于50GHz,连续波功率测量表明:在1dB增益压缩时,单指HBT可以提供100mW输出功率,对应的功率密度为6.67W/mm,功率饱和时最大输出功率112mW,对应功率密度为7.48W/mm,功率附加效率为67%.  相似文献   

2.
采用标准的湿法刻蚀工艺研制出了 S波段工作的非自对准 Al Ga As/ Ga As异质结双极晶体管 .对于总面积为 8× 2 μm× 10 μm的 HBT器件 ,测得其直流电流增益大于 10 ,电流增益截止频率 f T 大于 2 0 GHz,最高振荡频率fmax大于 30 GHz.连续波功率输出为 0 .3W,峰值功率附加效率 41%  相似文献   

3.
研制成 Ga As/ In Ga As异质结功率 FET(HFET) ,该器件是在常规的高 -低 -高分布 Ga As MESFET的基础上 ,在有源层的尾部引入 i-In Ga As层。采用 HFET研制的两级 C波功率放大器 ,在 5 .0~ 5 .5 GHz带内 ,当Vds=5 .5 V时 ,输出功率大于 3 2 .3 1 d Bm(0 .1 77W/ mm ) ,功率增益大于 1 9.3 d B,功率附加效率 (PAE)大于3 8.7% ,PAE最大达到 49.4% ,该放大器在 Vds=9.0 V时 ,输出功率大于 3 6.65 d Bm(0 .48W/ mm) ,功率增益大于 2 1 .6d B,PAE典型值 3 5 %  相似文献   

4.
自对准InGaP/GaAs HBT单片集成跨阻放大器   总被引:3,自引:1,他引:2  
对自对准 In Ga P/ Ga As HBT单片集成跨阻放大器进行了研究 .采用发射极金属做腐蚀掩膜并利用 Ga As腐蚀各向异性的特点来完成 BE金属自对准工艺 ,最终制作出的器件平均阈值电压为 1.15 V,单指管子电流增益为5 0 ,发射极面积 4μm× 14μm的单管在 IB=2 0 0μA和 VCE=2 V偏压条件下截止频率达到了 4 0 GHz.设计并制作了直接反馈和 CE- CC- CC两种单片集成跨阻放大器电路 ,测量得到的跨阻增益在 3d B带宽频率时分别为 5 0 .6 d BΩ和 4 5 .1d BΩ ,3d B带宽分别为 2 .7GHz和 2 .5 GHz,电路最小噪声系数分别为 2 .8d B和 3.2 d B.  相似文献   

5.
采用标准的湿法刻蚀工艺研制出了S波段工作的非自对准AlGaAs/GaAs异质结双极晶体管.对于总面积为8×2μm×10μm的HBT器件,测得其直流电流增益大于10,电流增益截止频率fT大于20GHz,最高振荡频率fmax大于30GHz.连续波功率输出为0.3W,峰值功率附加效率41%.  相似文献   

6.
非掺杂AlGaN/GaN微波功率HEMT   总被引:9,自引:4,他引:5  
报道了研制的Al Ga N / Ga N微波功率HEMT,该器件采用以蓝宝石为衬底的非掺杂Al Ga N/ Ga N异质结构,器件工艺采用了Ti/ Al/ Ni/ Au欧姆接触和Ni/ Au肖特基势垒接触以及Si N介质进行器件的钝化.研制的2 0 0μm栅宽T型布局Al Ga N / Ga N HEMT在1.8GHz,Vds=30 V时输出功率为2 8.93d Bm,输出功率密度达到3.9W/mm ,功率增益为15 .5 9d B,功率附加效率(PAE)为4 8.3% .在6 .2 GHz,Vds=2 5 V时该器件输出功率为2 7.0 6 d Bm ,输出功率密度为2 .5 W/ mm ,功率增益为10 .2 4 d B,PAE为35 .2 % .  相似文献   

7.
高性能六边形发射极InGaP/GaAs异质结双极型晶体管   总被引:1,自引:1,他引:0  
六边形发射极的自对准In Ga P/ Ga As异质结具有优异的直流和微波性能.采用发射极面积为2μm×10μm的异质结双极型晶体管,VCE偏移电压小于15 0 m V,膝点电压为0 .5 V(IC=16 m A) ,BVCEO大于9V,BVCBO大于14 V,特征频率高达92 GHz,最高振荡频率达到10 5 GHz.这些优异的性能预示着In Ga P/ Ga As HBT在超高速数字电路和微波功率放大领域具有广阔的应用前景  相似文献   

8.
大功率In(Ga)As/GaAs量子点激光器   总被引:3,自引:3,他引:0  
利用分子束外延技术和 S- K生长模式 ,系统研究了 In As/Ga As材料体系应变自组装量子点的形成和演化 .研制出激射波长λ≈ 960 nm,条宽 1 0 0μm,腔长 80 0μm的 In( Ga) As/Ga As量子点激光器 :室温连续输出功率大于 3.5W,室温阈值电流密度 2 1 8A/cm2 ,0 .61 W室温连续工作寿命超过 3760小时  相似文献   

9.
在发射极宽度为3μm和4 μm In Ga P/ Ga As HBT工艺的基础上,研究了发射极宽度为2 μm时发射极与基极之间的自对准工艺,用简单方法制备出了发射极宽度为2 μm的In Ga P/ Ga As HBT.发射极面积为2 μm×1 5 μm时器件的截止频率高达81 GHz,且集电极电流密度为7×1 0 4 A/ cm2 时仍没有出现明显的自热效应.它的高频和直流特性均比发射极宽度为3μm和4 μm In Ga P/ Ga As HBT的有了显著提高,并对器件性能提高的原因进行了分析  相似文献   

10.
南京电子器件研究所于 2 0 0 0年进行了 Ga As功率 PHEMT的研究开发 ,完成了“WC2 0 0 3型高电子迁移率功率晶体管”项目的设定和 Ku波段 1 0 W功率 PHEMT的研制。WC2 0 0 3型器件在 9.4~ 9.9GHz带内 ,输出功率大于 2 .5W,功率增益大于 9.5d B,功率附加效率典型值为 40 % ,带内增益起伏小于± 0 .5d B,该器件的栅宽为 4.8mm。采用两个 9.6mm栅宽功率 PHEMT管芯合成研制的 Ku波段内匹配功率 PHEMT,在 1 0 .5~ 1 1 .3GHz带内 ,输出功率大于 9.8W,带内最大输出功率为 1 0 .9W,功率增益大于 9.9d B,功率附加效率典型值为 40 %…  相似文献   

11.
InP HEMTs with a double recess 0.12 μm gate have been developed. The material structure was designed to be fully selective etched at both recess steps for improved uniformity and yield across the whole wafer. Devices demonstrated DC characteristics of extrinsic transconductances of 1000 mS/mm, maximum current density of 800 mA/mm and gate-drain reverse breakdown voltages of -7.8 V. Power measurements were performed at both 20 GHz and 60 GHz. At 20 GHz, the 6×75 μm devices yielded 65% maximum power added efficiency (PAE) with associated gain of 13.5 dB and output power of 185 mW/mm. When tuned for maximum output power it gave an output power density of 670 mW/mm with 15.6 dB gain and 49% PAE. At 60 GHz, maximum PAE of 30% has been measured with associated output power density of 290 mW/mm and gain of 7.4 dB. This represents the best power performance reported for InP-based double recess HEMT's  相似文献   

12.
A low-voltage single power supply enhancement-mode InGaP-AlGaAs-InGaAs pseudomorphic high-electron mobility transistor (PHEMT) is reported for the first time. The fabricated 0.5/spl times/160 /spl mu/m/sup 2/ device shows low knee voltage of 0.3 V, drain-source current (I/sub DS/) of 375 mA/mm and maximum transconductance of 550 mS/mm when drain-source voltage (V/sub DS/) was 2.5 V. High-frequency performance was also achieved; the cut-off frequency(F/sub t/) is 60 GHz and maximum oscillation frequency(F/sub max/) is 128 GHz. The noise figure of the 160-/spl mu/m gate width device at 17 GHz was measured to be 1.02 dB with 10.12 dB associated gain. The E-mode InGaP-AlGaAs-InGaAs PHEMT exhibits a high output power density of 453 mW/mm with a high linear gain of 30.5 dB at 2.4 GHz. The E-mode PHEMT can also achieve a high maximum power added efficiency (PAE) of 70%, when tuned for maximum PAE.  相似文献   

13.
Reports on the CW power performance at 20 and 30 GHz of 0.25 /spl mu/m /spl times/ 100 /spl mu/m AlGaN/GaN high electron mobility transistors (HEMTs) grown by MOCVD on semi-insulating SiC substrates. The devices exhibited current density of 1300 mA/mm, peak dc extrinsic transconductance of 275 mS/mm, unity current gain cutoff (f/sub T/) of 65 GHz, and maximum frequency of oscillation (f/sub max/) of 110 GHz. Saturated output power at 20 GHz was 6.4 W/mm with 16% power added efficiency (PAE), and output power at 1-dB compression at 30 GHz was 4.0 W/mm with 20% PAE. This is the highest power reported for 0.25-/spl mu/m gate-length devices at 20 GHz, and the 30 GHz results represent the highest frequency power data published to date on GaN-based devices.  相似文献   

14.
A double-recessed 0.2-μm-gate-length pseudomorphic HEMT (PHEMT) has been demonstrated with 500 mW of output power (833 mW/mm of gate periphery), 6-dB gain, and 35% power-added efficiency (PAE) at 32 GHz. At 44 GHz, the device exhibited 494 mW of output power (823 mW/mm), 4.3-dB gain, and 30% PAE. This level of performance is attributed to excellent MBE material, optimized epitaxial layer design, and the use of individual source vias and of double recess with tight channel dimensions. Excellent 3-in-wafer uniformity was also observed: DC yield was greater than 95% and the interquartile range for all DC parameters was less than 20% of the median value (most are significantly lower)  相似文献   

15.
We report on a double-pulse doped, double recess In/sub 0.35/Al/sub 0.65/As-In/sub 0.35/Ga/sub 0.65/As metamorphic high electron mobility transistor (MHEMT) on GaAs substrate. This 0.15-/spl mu/m gate MHEMT exhibits excellent de characteristics, high current density of 750 mA/mm, extrinsic transconductance of 700 mS/mm. The on and off state breakdown are respectively of 5 and 13 V and defined It gate current density of 1 mA/mm. Power measurements at 60 GHz were performed on these devices. Biased between 2 and 5 V, they demonstrated a maximum output power of 390 mW/mm at 3.1 V of drain voltage with 2.8 dB power gain and a power added efficiency (PAE) of 18%. The output power at 1 dB gain compression is still of 300 mW/mm. Moreover, the linear power gain is of 5.2 dB. This is to our knowledge the best output power density of any MHEMT reported at this frequency.  相似文献   

16.
We report the development of a power measurement setup in order to characterize devices at 94GHz. A very careful calibration of the setup has been performed in order to take into account in a most accurate way the losses through the different parts of the bench and in particular through the tuner. These aware power measurements have allowed to demonstrate state of the art power results on two different devices. We reached at 94GHz an output power of 876mW/mm associated to a 7.5-dB power gain and a power added efficiency (PAE) of 33% on a pseudomorphic high electron mobility transistor (PHEMT) on GaAs substrate. We achieved a 260-mW/mm maximum output power density with 5.9-dB power gain and 11% PAE on an InAsP channel HEMT on InP substrate.  相似文献   

17.
An In0.3Al0.7As/In0.3Ga0.7 As metamorphic power high electron mobility transistor (HEMT) grown on GaAs has been developed. This structure with 30% indium content presents several advantages over P-HEMT on GaAs and LM-HEMT on InP. A 0.15-μm gate length device with a single δ doping exhibits a state-of-the-art current gain cut-off frequency Ft value of 125 GHz at Vds=1.5 V, an extrinsic transconductance of 650 mS/mm and a current density of 750 mA/mm associated to a high breakdown voltage of -13 V, power measurements performed at 60 GHz demonstrate a maximum output power of 240 mW/mm with 6.4-dB power gain and a power added efficiency (PAE) of 25%. These are the first power results ever reported for any metamorphic HEMT  相似文献   

18.
Optimized AlGaN/AlN/GaN high electron mobility transistors (HEMTs) structures were grown on 2-in. semi-insulating (SI) 6H-SiC substrate by metal–organic chemical vapor deposition (MOCVD). The 2-in. HEMT wafer exhibited a low average sheet resistance of 305.3 Ω/sq with a uniformity of 3.85%. The fabricated large periphery device with a dimension of 0.35 μm × 2 mm demonstrated high performance, with a maximum DC current density of 1360 mA/mm, a transconductance of 460 mS/mm, a breakdown voltage larger than 80 V, a current gain cut-off frequency of 24 GHz and a maximum oscillation frequency of 34 GHz. Under the condition of continuous-wave (CW) at 8 GHz, the device achieved 18.1 W output power with a power density of 9.05 W/mm and power-added-efficiency (PAE) of 36.4%. While the corresponding results of pulse condition at 8 GHz are 22.4 W output power with 11.2 W/mm power density and 45.3% PAE. These are the state-of-the-art power performance ever reported for this physical dimension of GaN HEMTs based on SiC substrate at 8 GHz.  相似文献   

19.
In this work, continuous wave Ka-band power performance of AlGaN-GaN high electron-mobility transistors grown on semi-insulating SiC substrates are reported. The devices, with gate lengths of 0.25 /spl mu/m, exhibited maximum drain current density of 1.1 A/mm and peak extrinsic transconductance of 285 mS/mm. At 35 GHz, an output power density of 4.13 W/mm with 23% of power-added efficiency (PAE) and 7.54 dB of linear gain were achieved at a drain bias of 30 V. These power results represent the best power density, PAE, and gain combination reported at this frequency. The drain bias dependence of the Ka-band power performance of these devices is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号