首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A single-chip CMOS Global Positioning System (GPS) radio has been integrated using only a couple of external passive components for the input matching network and one external reference for the synthesizer. The receiver downconverts the GPS L1 signal at 1575.42 MHz to an IF of 9.45 MHz. The complete front-end and frequency synthesizer section have been integrated: low noise amplifier, image rejection mixer, IF active filter, and the full phase-locked loop synthesizer, including voltage-controlled oscillator and loop filter. The front-end measured performances are 81-dB maximum gain, 5.3-dB noise figure, and >30-dB image rejection. The synthesizer features a phase noise of -95 dBc/Hz at 1-MHz offset and a total integrated phase noise of less than 7/spl deg/ rms in the 500-Hz-1.5-MHz band. The front-end and the synthesizer draw, respectively, 11 and 9 mA from a 1.8-V supply. The architecture of the front-end and synthesizer has been geared to high level of integration and reduction of silicon area at the lowest possible power consumption. Consequently, the one reported here is the smallest and most integrated CMOS GPS receiver reported so far.  相似文献   

2.
A 0.13-mu m CMOS fourth-order notch filter for the rejection of the 5-6 GHz interference in UWB front-ends is reported. The filter is integrated into an analog front-end for Mode #1 UWB. A thorough analysis based on a simplified model of the filter is carried out. An algorithm for the automatic tuning and calibration of the filter is also discussed and demonstrated. Two versions of the circuit are designed and fabricated: the first comprises a low-noise amplifier and the filter, and the second expands it to a complete front-end. In the latter version the filter was also redesigned. The filter provides more than 35 dB of attenuation and has a tuning range of 900 MHz, adding less than 30% power consumption to the LNA. The out-of-band IIP3 (higher than -13.2 dBm with the filter off) takes a 9-dB advantage from the filter and the compression of the gain due to the out-of-band blocker is reduced by at least 6 dB in the complete front-end. The conversion gain of the front-end is 25 dB per channel, its average noise figure is lower than 6.2 dB, and its in-band 1-dB compression point is higher than - 30 dBm at a power consumption of 32 mW.  相似文献   

3.
An active image-rejection filter is presented in this paper, which applies actively coupled passive resonators. The filter has very low noise and high insertion gain, which may eliminate the use of a low-noise amplifier (LNA) in front-end applications. The GaAs monolithic-microwave integrated-circuit (MMIC) chip area is 3.3 mm2 . The filter has 12-dB insertion gain, 45-dB image rejection, 6.2-dB noise figure, and dissipates 4.3 mA from a 3-V supply. An MMIC mixer is also presented. The mixer applies two single-gate MESFETs on a 2.2-mm2 GaAs substrate. The mixer has 2.5-dB conversion gain and better than 8-dB single-sideband (SSB) noise figure with a current dissipation of 3.5 mA applying a single 5-V supply. The mixer exhibits very good local oscillator (LO)/RF and LO/IF isolation of better than 30 and 17 dB, respectively, Finally, the entire front-end, including the LNA, image rejection filter, and mixer functions is realized on a 5.7-mm 2 GaAs substrate. The front-end has a conversion gain of 15 dB and an image rejection of more than 53 dB with 0-dBm LO power. The SSB noise figure is better than 6.4 dB, The total power dissipation of the front-end is 33 mW. The MMIC's are applicable as a single-block LNA and image-rejection filter, mixer, and single-block front-end in digital European cordless telecommunications. With minor modifications, the MMIC's can be applied in other wireless communication systems working around 2 GHz, e.g., GSM-1800 and GSM-1900  相似文献   

4.
An analog front-end LSI for 1200/2400 full-duplex modems which conform to CCITT V.22. and Bell 212A is described. The chip includes A/D and D/A converters, bandlimiting filters, delay equalizers, AGC circuit, tone generator, multipurpose low-pass filter, and voltage reference generator. The chip is fabricated by a 5-/spl mu/m CMOS process, and chip size is 6.50 mm/spl times/6.37 mm. The circuit operates from +5.0-V and -5.0-V power supplies. Typical power consumption is 100 mW.  相似文献   

5.
主要介绍了一种用于机场异物探测雷达的W频段调频连续波(FMCW)收发前端的研究工作。基于波导T形接头的等效计算公式,对W频段波导合成电路进行了集中参数的电路建模,通过优化设计波导合成电路的参数,提高了波导合成电路的容差特性,解决了W频段波导功率合成电路加工精度要求高的问题,实现了W频段4路功率合成;采用低损耗的石英基材设计开发了微带薄膜滤波器技术,实现了W频段FMCW雷达接收前端的一体化集成设计;通过对低噪声放大器芯片键和金丝的匹配设计,实现了W频段收发前端的低噪声接收。最终实现的W频段FMCW收发前端的发射功率优于360 mW,接收机噪声系数优于5 dB。研制的收发前端为W频段FMCW雷达提供了一种有效的射频前端的解决方案。  相似文献   

6.
主要介绍了一种用于机场异物探测雷达的W频段调频连续波( FMCW)收发前端的研究工作。基于波导T形接头的等效计算公式,对W频段波导合成电路进行了集中参数的电路建模,通过优化设计波导合成电路的参数,提高了波导合成电路的容差特性,解决了W频段波导功率合成电路加工精度要求高的问题,实现了W频段4路功率合成;采用低损耗的石英基材设计开发了微带薄膜滤波器技术,实现了W频段FMCW雷达接收前端的一体化集成设计;通过对低噪声放大器芯片键和金丝的匹配设计,实现了W频段收发前端的低噪声接收。最终实现的W频段FMCW收发前端的发射功率优于360 mW,接收机噪声系数优于5 dB。研制的收发前端为W频段FMCW雷达提供了一种有效的射频前端的解决方案。  相似文献   

7.
This paper presents an integrable RF sampling receiver front-end architecture, based on a switched-capacitor (SC) RF sampling downconversion (RFSD) filter, for WLAN applications in a 2.4-GHz band. The RFSD filter test chip is fabricated in a 0.18-/spl mu/m CMOS technology and the measurement results show a successful realization of RF sampling, quadrature downconversion, tunable anti-alias filtering, downconversion to baseband, and decimation of the sampling rate. By changing the input sampling rate, the RFSD filter can be tuned to different RF channels. A maximum input sampling rate of 1072 MS/s has been achieved. A single-phase clock is used for the quadrature downconversion and the bandpass operation is realized by a 23-tap FIR filter. The RFSD filter has an IIP/sub 3/ of +5.5 dBm, a gain of -1 dB, and more than 17 dB rejection of alias bands. The measured image rejection is 59 dB and the sampling clock jitter is 0.64 ps. The test chip consumes 47 mW in the analog part and 40 mW in the digital part. It occupies an area of 1 mm/sup 2/.  相似文献   

8.
There is a growing demand for low-power, small-size and ambulatory biopotential acquisition systems. A crucial and important block of this acquisition system is the analog readout front-end. We have implemented a low-power and low-noise readout front-end with configurable characteristics for Electroencephalogram (EEG), Electrocardiogram (ECG), and Electromyogram (EMG) signals. Key to its performance is the new AC-coupled chopped instrumentation amplifier (ACCIA), which uses a low power current feedback instrumentation amplifier (IA). Thus, while chopping filters the 1/f noise of CMOS transistors and increases the CMRR, AC coupling is capable of rejecting differential electrode offset (DEO) up to plusmn50 mV from conventional Ag/AgCl electrodes. The ACCIA achieves 120 dB CMRR and 57 nV/radicHz input-referred voltage noise density, while consuming 11.1 muA from a 3 V supply. The chopping spike filter (CSF) stage filters the chopping spikes generated by the input chopper of ACCIA and the digitally controllable variable gain stage is used to set the gain and the bandwidth of the front-end. The front-end is implemented in a 0.5 mum CMOS process. Total current consumption is 20 muA from 3V  相似文献   

9.
A low power direct-conversion receiver RF front-end with high in-band IIP2/IIP3 and low 1/f noise is presented. The front-end includes the differential low noise amplifier, the down-conversion mixer, the LO buffer, the IF buffer and the bandgap reference. A modified common source topology is used as the input stages of the down-conversion mixer (and the LNA) to improve IIP2 of the receiver RF front-end while maintaining high IIP3. A shunt LC network is inserted into the common-source node of the switching pairs in the down-conversion mixer to absorb the parasitic capacitance and thus improve IIP2 and lower down the 1/f noise of the down-conversion mixer. The direct-conversion receiver RF front-end has been implemented in 0.18 μm CMOS process. The measured results show that the 2 GHz receiver RF front-end achieves +33 dBm in-band IIP2, 21 dB power gain, 6.2 dB NF and −2.3 dBm in-band IIP3 while only drawing 6.7 mA current from a 1.8 V power supply.  相似文献   

10.
An integrated 2.4 GHz CMOS receiver front-end according to the IEEE 802.15.4 standard is presented in this paper. It integrates the overall RF part, from the balun up to the first stage of the channel filter, as well as the cells for the LO signal conditioning. The proposed architecture is based on a 6 MHz low-IF topology, which uses an inductorless LNA and a new clocking scheme for driving a passive mixer. When integrated in a 90 nm CMOS technology, the receiver front-end exhibits an area of only 0.07 mm2, or 0.23 mm2 when including an input integrated balun. The overall chip consumes 4 mA from a single 1.35 V supply voltage and it achieves a 35 dB conversion gain from input power in dBm to output voltage in dBvpk, a 7.5 dB NF value, -10 dBm of IIP3 and more than 32 dB of image rejection.  相似文献   

11.
A new switched-capacitor decimation filter design technique is presented. Based on a combination of the polyphase decomposition of IIR low-pass transfer functions having small denominator order and time-multiplexed operational transconductance amplifiers, the filter presents very low sensitivity to transfer function coefficients. It suits analog front-end systems by providing signal conditioning and relaxing the filtering requirements in converting between continuous-time and discrete-time signals. A prototype decimation filter has been designed and fabricated in a standard CMOS process to verify the proposed approach. In fully differential design, the filter has a die area of 2.8 mm2, dissipates 67.2 mW out of a 5 V power supply and achieves a dynamic range of 58 dB at 1% THD. Experimental measurements are found in close agreement with theory.  相似文献   

12.
This paper proposes a novel three-phase AC/DC converter without a front-end filter. Because an adjustable triangular-wave pulsewidth modulation (PWM) (ATPWM) technique is adopted, not only is a front-end filter located after the three-phase rectifier is omitted, but also the size of the input AC filter and the output DC filter are reduced. In addition, this AC/DC converter has many advantages such as simpler structure, higher reliability, and better output waveform. The principle of operation, harmonics elimination, and feedback control of the novel AC/DC topology are elaborated. A thorough analysis on its performance under an unbalanced system is presented. Finally, the theoretical analysis is proved to be correct by simulations and experiments  相似文献   

13.
正A current-mode front-end circuit with low voltage and low power for analog hearing aids is presented. The circuit consists of a current-mode AGC(automatic gain control) and a current-mode adaptive filter.Compared with its conventional voltage-mode counterparts,the proposed front-end circuit has the identified features of frequency compensation based on the state space theory and continuous gain with an exponential characteristic.The frequency compensation which appears only in the DSP unit of the digital hearing aid can upgrade the performance of the analog hearing aid in the field of low-frequency hearing loss.The continuous gain should meet the requirement of any input amplitude level,while its exponential characteristic leads to a large input dynamic range in accordance with the dB SPL(sound pressure level).Furthermore,the front-end circuit also provides a discrete knee point and discrete compression ratio to allow for high calibration flexibility.These features can accommodate users whose ears have different pain thresholds.Taking advantage of the current-mode technique,the MOS transistors work in the subthreshold region so that the quiescent current is small.Moreover,the input current can be compressed to a low voltage signal for processing according to the compression principle from the current-domain to the voltage-domain.Therefore,the objective of low voltage and low power(48μW at 1.4 V) can be easily achieved in a high threshold-voltage CMOS process of 0.35μm(V_(TON) + |V_(TOP)|≈1.35 V).The THD is below -45 dB.The fabricated chip only occupies the area of 1×0.5 mm~2 and 1×1 mm~2.  相似文献   

14.
A 5-GHz transmitter front-end for 802.11a and HIPERLAN2 wireless local area networks was implemented in a low-cost 46-GHz-f/sub T/ silicon bipolar technology. The transmitter includes a digitally controlled linear-in-dB variable-gain up-converter and a three-stage linear power amplifier. At a 3-V supply voltage, the front-end exhibits a 23.5-dBm output 1-dB compression point, 35-dB maximum power gain, and 30-dB dynamic range. The dB-linear gain error is lower than /spl plusmn/0.8 dB. The transmitter is able to comply with the stringent error vector magnitude requirement of the standard up to a 19-dBm output power level.  相似文献   

15.
As CMOS technology scales down, digital supply voltage and digital power consumption goes down. However, the supply voltage and power consumption of the RF front-end and analog sections do not scale in a similar fashion. In fact, in many state-of-the-art communication transceivers, RF and analog sections can consume more energy compared to the digital part. In this paper, first, a system level energy model for all the components in the RF and analog front-end is presented. Next, the RF and analog front-end energy consumption and communication quality of three representative systems are analyzed: a single user point-to-point wireless data communication system, a multi-user code division multiple access (CDMA)-based system and a receive-only video distribution system. For the single user system, the effect of occupied signal bandwidth, peak-to-average ratio (PAR), symbol rate, constellation size, and pulse-shaping filter roll-off factor is analyzed; for the CDMA-based multi-user system, the effect of the number of users in the cell and multiple access interference (MAI) along with the PAR and filter roll-off factor is studied; for the receive-only system, the effect of 1/f noise for direct-conversion receiver and the effect of IF frequency for low-IF architecture on the RF front-end power consumption is analyzed. For a given communication quality specification, it is shown that the energy consumption of a wireless communication front-end can be scaled down by adjusting parameters such as the pulse shaping filter roll-off factor, constellation size, symbol rate, number of users in the cell, and signal center frequency  相似文献   

16.
A CMOS low-IF receiver front-end applied for Wireless Local Area Networks (WLANs) is presented in this paper. The receiver front-end comprises a low noise amplifier (LNA), a down-converter, a single-to-fully converter, a polyphase filter, and a summator/subtractor. This low-IF architecture achieves 0.46° phase error and 0.7 dB gain mismatch in IQ channels while the 2.4 GHz RF signal is down-converted into 100 MHz of IF band. The cascaded noise figure (NF) of LNA and polyphase network is 4.89 dB within the WLANs' requirement. The chip realized in a 0.6 m CMOS technology occupys 2.4 mm × 2.1 mm active area. From a single 3.3 V power supply, it consumes 300 mW power.  相似文献   

17.
Presents design, implementation, and measurement of a three-dimensional (3-D)-deployed RF front-end system-on-package (SOP) in a standard multi-layer low temperature co-fired ceramic (LTCC) technology. A compact 14 GHz GaAs MESFET-based transmitter module integrated with an embedded bandpass filter was built on LTCC 951AT tapes. The up-converter MMIC integrated with a voltage controlled oscillator (VCO) exhibits a measured up-conversion gain of 15 dB and an IIP3 of 15 dBm, while the power amplifier (PA) MMIC shows a measured gain of 31 dB and a 1-dB compression output power of 26 dBm at 14 GHz. Both MMICs were integrated on a compact LTCC module where an embedded front-end band pass filter (BPF) with a measured insertion loss of 3 dB at 14.25 GHz was integrated. The transmitter module is compact in size (400 /spl times/ 310 /spl times/ 35.2 mil/sup 3/), however it demonstrated an overall up-conversion gain of 41 dB, and available data rate of 32 Mbps with adjacent channel power ratio (ACPR) of 42 dB. These results suggest the feasibility of building highly SOP integrated RF front ends for microwave and millimeter wave applications.  相似文献   

18.
A new bandpass amplifier which performs both functions of low-noise amplifier (LNA) and bandpass filter (BPF) is proposed for the application of 900-MHz RF front-end in wireless receivers. In the proposed amplifier, the positive-feedback Q-enhancement technique is used to overcome the low-gain low-Q characteristics of the CMOS tuned amplifier. The Miller-capacitance tuning scheme is used to compensate for the process variations of center frequency. Using the high-Q bandpass amplifier in the receivers, the conventional bulky off-chip filter is not required. An experimental chip fabricated by 0.8-μm N-well double-poly-double-metal CMOS technology occupies 2.6×2.0 mm2 chip area. Under a 3 V supply voltage, the measured quality factor is tunable between 2.2 and 44. When the quality factor is tuned at Q=30, the measured center frequency of the amplifier is tunable between 869-893 MHz with power gain 17 dB, noise figure 6.0 dB, output 1 dB compression point at -30 dBm, third-order input intercept point at -14 dBm, and power dissipation 78 mW  相似文献   

19.
A 0.9 V 1.2 mA fully integrated radio data system (RDS) receiver for the 88-108 MHz FM broadcasting band is presented. Requiring only a few external components (matching network, VCO inductors, loop filter components), the receiver, which has been integrated in a standard digital 0.18 /spl mu/m CMOS technology, achieves a noise figure of 5 dB and a sensitivity of -86dBm. The circuit can be configured and the RDS data retrieved via an I/sup 2/C interface so that it can very simply be used as a peripheral in any portable application. A 250 kHz low-IF architecture has been devised to minimize the power dissipation of the baseband filters and FM demodulator. The frequency synthesizer consumes 250 /spl mu/A, the RF front-end 450 /spl mu/A while providing 40 dB of gain, the baseband filter and limiters 100 /spl mu/A, and the FM and BPSK analog demodulators 300 /spl mu/A. The chip area is 3.6 mm/sup 2/.  相似文献   

20.
A low-power switched-current matched filter (MF) for code-division multiple-access (CDMA) systems has been developed. The front-end voltage-to-current (V/I) converter has been eliminated by merging the function into each matching cell utilizing the MOS linear I-V characteristics. A low-power analog-to-digital (A/D) converter has also been developed to establish smooth interfacing to digital back-end processing for a delayed locked loop (DLL) and a RAKE receiver. A proof-of-concept chip was fabricated in a 0.35-μm standard CMOS technology with a measured power consumption of 1.65 mW at 11 Mchip/s with 2-V power supply including the A/D converter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号