首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
在新型非易失性存储领域,结构简单、高速低耗的阻变存储器具有巨大优势和很强的竞争力.简要介绍了阻变存储器的结构及其两个电阻转变行为.总结了两类阻变机理,探讨了阻变存储器性能优化的方法,以及优化方法在阻变性能与器件的可靠性和稳定性之间如何取得平衡统一的问题,并展望了其前景.  相似文献   

2.
研究了基于高k介质材料的阻变存储器的写入/擦除 (SET/RESET) 特性和物理机制.研究发现基于NbAlO材料的阻变存储器SET/RESET电压具有较大波动性, 通过结构优化, 在Al2O3/NbAlO/Al2O3纳米薄片堆垛结构器件中获得高度稳定性的可重复的阻变特性.基于电场调制效应, 提出了一种统一的电阻开关模型去模拟阻变存储器的SET/RESET行为, 并探讨了单层阻变薄膜的阻变存储器中由导电单元形成和湮灭的巨大随机性引起的阻变特性分布.当在NbAlO基阻变存储器中嵌入超薄Al2O3膜后, 阻变存储器的SET/RESET电压稳定性将显著提升, 其原因在于采用堆垛结构的阻变器件中各介质层中的电场重新分布并精确可控, 因此导电细丝的导通/断裂通过电场调制作用稳定均匀地在发生在具有高电场的薄缓冲层介质层中.  相似文献   

3.
随着器件尺寸的缩小,阻变存储器(RRAM)具有取代现有主流Flash存储器成为下一代新型存储器的潜力。但对RRAM器件电阻转变机制的研究在认识上依然存在很大的分歧,直接制约了RRAM的研发与应用。通过介绍阻变存储器的基本工作原理、不同的阻变机制以及基于阻变存储器所表现出的不同I-V特性,研究了器件的阻变特性;详细分析了阻变存储器的五种阻变物理机制,即导电细丝(filament)、空间电荷限制电流效应(SCLC)、缺陷能级的电荷俘获和释放、肖特基发射效应(Schottky emission)以及普尔-法兰克效应(Pool-Frenkel);同时,对RRAM器件的研究发展趋势以及面临的挑战进行了展望。  相似文献   

4.
本论文采用溶胶凝胶法制备了TiO2薄膜,研究Pt/TiO2/Pt器件的电致阻变性质,并结合I-V特性曲线分析器件内部的阻变机制,器件高低阻态的导电机制分别为肖特基发射机制和欧姆导电机制.结果表明,Pt/TiO2/Pt器件在非易失性存储器领域具有潜在的应用.  相似文献   

5.
钙钛矿材料因其独特的光学和电学特性,例如高载流子迁移率、高光致发光效率、高消光系数、带隙可调等,而成为光电子领域研究的热门。然而,大多数钙钛矿材料都包含铅元素,铅的毒性问题在一定程度上阻碍了钙钛矿光电子器件的大规模产业化应用。为了突破这一限制,可以用毒性较小的化学元素,例如锡、铋、锑等,来代替钙钛矿中的铅元素。本文综述了一些有代表性的无铅钙钛矿材料的特性及它们在太阳电池、光电探测器、发光二极管等光电子器件中的应用研究进展,并对此方向未来的发展做出了展望。  相似文献   

6.
李萌  陈刚  林殷茵 《半导体技术》2012,37(2):150-153,163
针对新型阻变存储器(RRAM)工艺良率不高的问题,提出了一种新型的修复解决方案,该方案基于阻变单元的特殊性能,即初始状态为高阻,经过单元初始化操作过程后转变为低阻。利用这样特性的阻变单元作为错误检测位、冗余单元作为修复位,提出了三种不同的组织结构来实现修复操作。三种结构由于主存储器、检验位存储器及冗余存储器的组织方式不同,达到了不同的冗余存储器利用率。最后,通过数学分析可以证明,该方案在利用了较少冗余存储器的条件下,可以将阻变存储器的错误率普遍降低10~30倍,实现了较好的修复效果。  相似文献   

7.
相对于现在流行的FLASH型存储器,新型阻变存储器(resistive-RAM,RRAM)有很多优势,比如较高的存储密度和较快的读写速度。而针对RRAM的读写操作特性,提出了一种适用于新型阻变存储器的提供操作电压的电路。该方案解决了新型存储器需要外部提供高于电源电压的操作电压的问题,使得阻变存储器能应用于嵌入式设备。同时,对工艺波动和温度波动进行补偿,从而降低了阻变存储器的读写操作在较差的工艺和温度环境下的失败概率,具有很强的实际应用意义。该设计采用0.13μm标准CMOS 6层金属工艺在中芯国际(SMIC)流片实现,测试结果表明,采用此电路的RRAM能正确地进行数据编程和擦除等操作,测试结果达到设计要求。  相似文献   

8.
在各种新型非挥发性存储器中,阻变存储器(RRAM)具有成为下一代存储器的潜力.介绍了RRAM器件的基本结构,分类总结了常用的材料以及制备工艺,对RRAM阵列的集成方案进行了比较,并讨论了目前存在的问题;最后,对RRAM的研究趋势进行了展望.  相似文献   

9.
用热氧化法在空气中加热铜片制备了CuO纳米线(CuO NWs),通过FESEM对纳米线表面进行了观察,并用液体转移法组装成功了一种简单的阻变存储器件。通过I-V测试系统观察到了Cu/CuO NWs/Cu器件表现出了明显的双极型和单极型。最后通过对比高阻态(HRS)和低阻态(LRS)的表面形貌,解释了Cu/CuO NWs/Cu器件的阻变机制。  相似文献   

10.
设计了一款基于氧化钨的8Mb高密度阻变存储器,采用单晶体管开关、单电阻(1T1R)的存储器单元结构,设计了完整的存储单元、行列译码器、写驱动和灵敏放大器等关键模块。存储器芯片采用HHNEC 0.13μm 1P8M CMOS工艺流片。仿真结果表明,在8F2的高密度存储单元面积下,该存储器可实现准确的数据写入和读出功能。  相似文献   

11.
氧化钒薄膜的制备及电致开关特性的研究   总被引:3,自引:1,他引:2  
采用反应溅射法,室温下,在Cu/Ti/SiO2/Si衬底上制备了氧化钒(VOx)薄膜,并对薄膜进行450℃、30min的真空退火处理.采用X-射线衍射(XRD)、原子力显微镜(AFM)对薄膜的结晶取向和表面形貌进行了表征,通过半导体参数分析仪对薄膜的电开关特性进行测试,并利用导电原子力显微镜(CAFM)对VOx薄膜的导...  相似文献   

12.
In order to fulfill the information storage needs of modern societies, the performance of electronic nonvolatile memories (NVMs) should be continuously improved. In the past few years, resistive random access memories (RRAM) have raised as one of the most promising technologies for future information storage due to their excellent performance and easy fabrication. In this work, a novel strategy is presented to further extend the performance of RRAMs. By using only cheap and industry friendly materials (Ti, TiO2, SiOX, and n++Si), memory cells are developed that show both filamentary and distributed resistive switching simultaneously (i.e., in the same IV curve). The devices exhibit unprecedented hysteretic IV characteristics, high current on/off ratios up to ≈5 orders of magnitude, ultra low currents in high resistive state and low resistive state (100 pA and 125 nA at –0.1 V, respectively), sharp switching transitions, good cycle‐to‐cycle endurance (>1000 cycles), and low device‐to‐device variability. We are not aware of any other resistive switching memory exhibiting such characteristics, which may open the door for the development of advanced NVMs combining the advantages of filamentary and distributed resistive switching mechanisms.  相似文献   

13.
Oxide‐based metal–insulator–metal structures are of special interest for future resistive random‐access memories. In such cells, redox processes on the nanoscale occur during resistive switching, which are initiated by the reversible movement of native donors, such as oxygen vacancies. The formation of these filaments is mainly attributed to an enhanced oxygen diffusion due to Joule heating in an electric field or due to electrical breakdown. Here, the development of a dendrite‐like structure, which is induced by an avalanche discharge between the top electrode and the Ta2O5‐x layer, is presented, which occurs instead of a local breakdown between top and bottom electrode. The dendrite‐like structure evolves primarily at structures with a pronounced interface adsorbate layer. Furthermore, local conductive atomic force microscopy reveals that the entire dendrite region becomes conductive. Via spectromicroscopy it is demonstrated that the subsequent switching is caused by a valence change between Ta4+ and Ta5+, which takes place over the entire former Pt/Ta2O5‐x interface of the dendrite‐like structure.  相似文献   

14.
The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated.By oxygen doping in the growth process of amorphous silicon,the device resistive-switching performances,such as the ON/OFF resistance ratios,yield and stability were improved,which may be ascribed to the significant reduction of defect density because of oxygen incorporation.The device I-V characteristics are strongly dependent on the oxygen doping concentration.As the oxygen doping concentration increases,the Si-rich device gradually transforms to an oxygen-rich device,and the device yield,switching characteristics,and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device.Finally,the device resistive-switching mechanism was analyzed.  相似文献   

15.
Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.  相似文献   

16.
Ferroelectric tunnel junctions (FTJs) are promising candidates for nonvolatile memories and memristor‐based computing circuits. Thus far, most research has focused on FTJs with a perovskite oxide ferroelectric tunnel barrier. As the need for high‐temperature epitaxial film growth challenges the technological application of such inorganic junctions, more easily processable organic ferroelectrics can serve as alternative if large tunneling electroresistance (TER) and good switching durability would persist. This study reports on the performance of FTJs with a spin‐coated ferroelectric P(VDF‐TrFE) copolymer tunnel barrier. The use of three different bottom electrodes, indium tin oxide (ITO), La0.67Sr0.33MnO3, (LSMO), and Nb‐doped SrTiO3 (STO) are compared and it is shown that the polarity and magnitude of the TER effect depend on their conductivity. The largest TER of up to 107% at room temperature is measured on FTJs with a semiconducting Nb‐doped STO electrode. This large switching effect is attributed to the formation of an extra barrier over the space charge region in the substrate. The organic FTJs exhibit good resistance retention and switching endurance up to 380 K, which is just below the ferroelectric Curie temperature of the P(VDF‐TrFE) barrier.  相似文献   

17.
This work reports a resistive switching effect observed at rectifying Pt/Bi1–δFeO3 interfaces and the impact of Bi deficiencies on its characteristics. Since Bi deficiencies provide hole carriers in BiFeO3, Bi‐deficient Bi1–δFeO3 films act as a p‐type semiconductor. As the Bi deficiency increased, a leakage current at Pt/Bi1–δFeO3 interfaces tended to increase, and finally, rectifying and hysteretic current–voltage (IV) characteristics were observed. In IV characteristics measured at a voltage‐sweep frequency of 1 kHz, positive and negative current peaks originating from ferroelectric displacement current were observed under forward and reverse bias prior to set and reset switching processes, respectively, suggesting that polarization reversal is involved in the resistive switching effect. The resistive switching measurements in a pulse‐voltage mode revealed that the switching speed and switching ratio can be improved by controlling the Bi deficiency. The resistive switching devices showed endurance of >105 cycles and data retention of >105 s at room temperature. Moreover, unlike conventional resistive switching devices made of metal oxides, no forming process is needed to obtain a stable resistive switching effect in the ferroelectric resistive switching devices. These results demonstrate promising prospects for application of the ferroelectric resistive switching effect at Pt/Bi1–δFeO3 interfaces to nonvolatile memory.  相似文献   

18.
Developing a means by which to compete with commonly used Si‐based memory devices represents an important challenge for the realization of future three‐dimensionally stacked crossbar‐array memory devices with multifunctionality. Therefore, oxide‐based resistance switching memory (ReRAM), with its associated phenomena of oxygen ion drifts under a bias, is becoming increasingly important for use in nanoscalable crossbar arrays with an ideal memory cell size due to its simple metal–insulator–metal structure and low switching current of 10–100 μA. However, in a crossbar array geometry, one single memory element defined by the cross‐point of word and bit lines is highly susceptible to unintended leakage current due to parasitic paths around neighboring cells when no selective devices such as diodes or transistors are used. Therefore, the effective complementary resistive switching (CRS) features in all Ti‐oxide‐based triple layered homo Pt/TiOx/TiOy/TiOx/Pt and hetero Pt/TiOx/TiON/TiOx/Pt geometries as alternative resistive switching matrices are reported. The possible resistive switching nature of the novel triple matrices is also discussed together with their electrical and structural properties. The ability to eliminate both an external resistor for efficient CRS operation and a metallic Pt middle electrode for further cost‐effective scalability will accelerate progress toward the realization of cross‐bar ReRAM in this framework.  相似文献   

19.
High‐performance memristors based on AlN films have been demonstrated, which exhibit ultrafast ON/OFF switching times (≈85 ps for microdevices with waveguide) and relatively low switching current (≈15 μA for 50 nm devices). Physical characterizations are carried out to understand the device switching mechanism, and rationalize speed and energy performance. The formation of an Al‐rich conduction channel through the AlN layer is revealed. The motion of positively charged nitrogen vacancies is likely responsible for the observed switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号