首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
管忻  冯军 《电子器件》2007,30(2):411-414
采用CSM0.35μm CMOS工艺,设计了3.125 Gbit/s4:1复接器.系统采用树型结构,由两个并行的低速2:1复接单元和一个高速2:1复接单元级联而成.低速单元采用带有电平恢复的传输管逻辑实现,高速单元采用动态传输门逻辑实现.具体电路由锁存器、选择器、分频器以及输入输出缓冲组成.复接器芯片面积为0.675mm×0.6mm.3.3V电源电压下,芯片整体功耗小于130mW,核心功耗是25mW.最高工作速率可达4Gbit/s.  相似文献   

2.
缪瑜  冯军  章丽  熊明珍 《电子器件》2007,30(1):60-62
介绍了可用于SDH STM-64光纤传输系统的4∶1复接器.整个电路采用树型结构,低速的复接单元采用动态双相伪NMOS逻辑实现,高速的复接单元采用SCL逻辑实现,提出了一种新型采用正反馈对的单端转双端电路,实现由低速单元到高速单元的逻辑变换.基于此结构的全定制单片集成电路采用0.18 μm CMOS工艺设计并实现.测试结果表明,在供电电压1.8 V,50 Ω负载条件下,复接输出数据速率超过10 Gbit/s,在标准速率10 Gbit/s,输出电压峰-峰值180 mV时,功耗仅为180mW,抖动4.9/s(rms),芯片面积为0.89 mm2×0.7 mm2.  相似文献   

3.
缪瑜  冯军  章丽  熊明珍   《电子器件》2007,30(1):60-62
介绍了可用于SDHSTM-64光纤传输系统的4:1复接器.整个电路采用树型结构,低速的复接单元采用动态双相伪NMOS逻辑实现,高速的复接单元采用SCL逻辑实现,提出了一种新型采用正反馈对的单端转双端电路,实现由低速单元到高速单元的逻辑变换.基于此结构的全定制单片集成电路采用0.18μm CMOS工艺设计并实现.测试结果表明,在供电电压1.8V,50Q负载条件下,复接输出数据速率超过10Gbit/s,在标准速率10Gbit/s,输出电压峰一峰值180mV时,功耗仅为180mw,抖动4.9/s(rms),芯片面积为0.89mm^2×0. 7 mm^2.  相似文献   

4.
张伟  李竹 《电子工程师》2007,33(5):12-14,24
介绍了一种超高速4∶1复接器集成电路。电路采用0.18μm CMOS工艺实现,供电电源1.8 V。电路采用源极耦合场效应管逻辑,与静态CMOS逻辑相比具有更高的速度。为了避免高速时序电路中常见的时钟偏差,在时钟树中放置了缓冲器。在设计中采用有源电感的并联峰化技术有效地提高了电路工作速度。仿真结果表明最高速度可达13.5 Gbit/s,电路功耗约313 mW,复接器芯片面积约0.97×0.88 mm2。  相似文献   

5.
采用0.35μm CM O S工艺设计了用于光纤传输系统的低功耗16∶1复接器,实现了将16路155.52M b/s数据复接成一路2.5G b/s的数据输出的功能。该复接器以混合结构形式实现:低速部分采用串行结构,高速部分采用树型结构。具体电路由锁存器、选择器及分频器组成,以CM O S逻辑和源极耦合逻辑(SCL)实现。用Sm art SP ICE软件进行仿真的结果显示:在3.3V供电时,整体电路的复接输出最高工作速度可达3.5G b/s,功耗小于300mW。  相似文献   

6.
低功耗0.35μm CMOS 2.5Gb/s 16:1复接器设计   总被引:1,自引:0,他引:1  
采用0.35μm CMOS工艺设计了用于光纤传输系统的低功耗16:1复接器,实现了将16路155.52Mb/s数据复接成一路2.5Gb/s的数据输出的功能.该复接器以混合结构形式实现:低速部分采用串行结构,高速部分采用树型结构.具体电路由锁存器、选择器及分频器组成,以CMOS逻辑和源极耦合逻辑(SCL)实现.用Smart SPICE软件进行仿真的结果显示:在3.3V供电时,整体电路的复接输出最高工作速度可达3.5Gb/s,功耗小于300mW.  相似文献   

7.
蒋俊洁  冯军  李有慧  熊明珍   《电子器件》2005,28(4):788-791
采用TSMC0.18μmCMOS工艺实现了一个应用于光纤通信系统SDHSTM-64的10Gb/s 1:4分接器,整个系统采用树型结构,由一个高速1:2分接单元,两个低速1:2分接单元。分频器,数据及时钟输入输出缓冲组成,其中高速分接单元采用共栅结构,单时钟输入的触发器实现;而低速分接单元则由动态CMOS逻辑实现,两个基本结构的使用都有利于降低功耗。该芯片工作速度最高达12.5Gb/s。功耗仅为120mW。  相似文献   

8.
采用0.35um CMOS工艺设计了用于光纤传输系统的低功耗16:1复接器,实现了将16路155.52Mb/s数据复接成路2.5Gb/s的数据输出的功能。该复接器以混合结构形式实现:低速部分采用串行结构,高速部分采用树型结构。具体电路由锁存器、选择器及分频器组成,以CMOS逻辑和源极耦合逻辑(SCL)实现。用Smart SPICE软件进行仿真的结果显示:在3.3V供电时,整体电路的复接输出最高工作速度可达3.5Gb/s,功耗小于300mW。  相似文献   

9.
介绍了使用 0 2 μmGaAsHEMT工艺设计的一个 1 0Gb/s以上的光纤传输用2∶1复接器。该复接器使用了半速率时钟的结构。为了减小功耗 ,设计时使用了 3 3V的电源 ,并对每个单元进行了优化。整个芯片的功耗约为 460mW。测试结果显示 ,该电路可以工作在 1 0Gb/s以上的数据速率。  相似文献   

10.
采用TSMC 0.25μm RF CMOS工艺设计了一个应用于光纤传输系统的10Gbit/s CMOS 1:8分接器.整个系统采用树型结构,由3级1:2分接器、2级1:2分频器、级间缓冲器和输入、输出接口电路构成.为了适应高速度的要求,所有电路全都采用源极耦合场效应管逻辑来实现.使用SmartSpice进行了仿真,结果表明:在电源电压为3.3V时,电路的最高工作速率可以达到10Gbit/s,电路功耗约为800mW.  相似文献   

11.
介绍一种用于千兆以太网的1.25Gb/s分接器电路。该电路实现了1路1.25Gb/s高速差分数据到10路125Mb/s低速并行单端数据的分接功能。电路采用树型分接器结构进行设计,包含一个高速1∶2分接器电路和两个低速1∶5分接器电路。芯片采用台湾TSMC的0.25μm混合信号标准CMOS工艺进行设计,后仿真结果表明,所设计电路完全达到了千兆以太网的系统要求,可以工作在1.25Gb/s的数据速率上。  相似文献   

12.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s.该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺.所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率.该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗.通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确.芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

13.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s.该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺.所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率.该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗.通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确.芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

14.
0.18 μm CMOS 10 Gbit/s分接器设计   总被引:6,自引:0,他引:6  
徐阳  冯军 《电子工程师》2004,30(3):5-6,9
分析了分接器的电路原理及系统结构,通过比较,给出了最优的实现方案.使用TSMC 0.18 μm CMOS工艺设计出了速率为10 Gbit/s的分接器.简要介绍了单元电路的电路结构,给出了仿真结果和版图.芯片的电源供电电压为1.8 V,功耗为400mW.  相似文献   

15.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s.该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺.所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率.该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗.通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确.芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

16.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s. 该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺. 所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率. 该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗. 通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确. 芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

17.
介绍了使用0.2μm GaAsHEMT工艺设计的一个10Gb/s以上的光纤传输用2:1复接器。该复接器使用了半速率时钟的结构。为了减小功耗,设计时使用了3.3V的电源,并对每个单元进行了优化。整个芯片的功耗约为460mW。测试结果显示,该电路可以工作在10Gb/s以上的数据速率。  相似文献   

18.
采用CSMC0.6μm CMOS工艺设计实现了速率为622Mbps的4∶1复接器和激光二极管驱动器电路。4∶1复接器采用树型结构,由3个2∶1复接器组成。激光二极管驱动器电路由两级差分放大器和一级电流开关构成,级间采用源级跟随器隔离。电路芯片尺寸为1.5mm×0.7mm。电路采用单一正5V电压供电,功耗约为900mW。测试结果表明,电路的最高工作速率超过1.25Gbps速率,输出最大电流超过85mA。  相似文献   

19.
12Gb/s 0.25μm CMOS数据判决和1∶2数据分接电路   总被引:1,自引:1,他引:0  
采用TSMC 0.25μm CMOS工艺成功实现了用于光纤传输系统的12Gb/s数据判决和1∶2数据分接电路.测试结果显示,在3.3V电源供电情况下,功耗为600mW,其中包括3路输出缓冲.输入信号单端峰峰值为250mV时,该芯片的工作速率超过12Gb/s,相位裕度超过100°.芯片面积为1.07mm×0.99mm.  相似文献   

20.
采用TSMC 0.25μm CMOS工艺成功实现了用于光纤传输系统的12Gb/s数据判决和1∶2数据分接电路.测试结果显示,在3.3V电源供电情况下,功耗为600mW,其中包括3路输出缓冲.输入信号单端峰峰值为250mV时,该芯片的工作速率超过12Gb/s,相位裕度超过100°.芯片面积为1.07mm×0.99mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号