首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
3D堆叠技术近年来发展迅速,采用硅通孔技术(TSV)是3D堆叠封装的主要趋势.介绍了3D堆叠集成电路、硅通孔互连技术的研究现状、TSV模型;同时阐述了TSV的关键技术与材料,比如工艺流程、通孔制作、通孔填充材料、键合技术等;最后分析了其可靠性以及面临的挑战.TSV技术已经成为微电子领域的热点,也是未来发展的必然趋势,运用它将会使电子产品获得高性能、低成本、低功耗和多功能性.  相似文献   

2.
3D-TSV技术——延续摩尔定律的有效通途   总被引:2,自引:0,他引:2  
对于堆叠器件的3-D封装领域而言,硅通孔技术(TSV)是一种新兴的技术解决方案.将器件3D层叠和互连可以进一步加快产品的时钟频率、降低能耗和提高集成度.为了在容许的成本范围内跟上摩尔定律的步伐,在主流器件设计和生产过程中采用三维互联技术将会成为必然.介绍了TSV技术的潜在优势,和制约该技术发展的一些不利因素及业界新的举...  相似文献   

3.
日本尔必达公司27日宣布已经开始销售采用硅通孔互连技术(TSV)制作的DDR3 SDRAM三维堆叠芯片的样品。这款样品的内部由四块2Gb密度DDR3 SDRAM芯片通过TSV三维堆叠技术封装为一块8Gb密度DDR3 SDRAM芯片(相当1GB容量),该三维芯片中还集成了接口功能芯片。  相似文献   

4.
陈媛  张鹏  夏逵亮 《半导体技术》2018,43(6):473-479
随着3D集成封装的发展,硅通孔(TSV)成为实现3D堆叠中最有前景的技术之一.通过通孔和微凸点实现上下堆叠IC之间的垂直电连接,先进的TSV技术能够满足3D SIP异构集成、高速宽带、小尺寸及高性能等要求.然而,作为新型互连技术,TSV技术面临许多工艺上的困难和挑战,其可靠性没有得到充分的研究和保证.识别缺陷、分析失效机理对TSV三维集成器件的设计、生产和使用等各环节的优化和改进具有重要作用.对不同形状、不同深宽比的TSV通孔边界层进行了微观物理分析,对通孔形状、边界层均匀性等方面进行了评价,分析了各种工艺缺陷形成的物理机制以及可能带来的失效影响.最后根据其产生的原因提出了相应的改进措施.  相似文献   

5.
后摩尔时代的封装技术   总被引:4,自引:2,他引:2  
介绍了在高性能的互连和高速互连芯片(如微处理器)封装方面发挥其巨大优势的TSV互连和3D堆叠的三维封装技术。采用系统级封装(SiP)嵌入无源和有源元件的技术,有助于动态实现高度的3D-SiP尺寸缩减。将多层芯片嵌入在内核基板的腔体中;采用硅的后端工艺将无源元件集成到硅衬底上,与有源元件芯片、MEMS芯片一起形成一个混合集成的器件平台。在追求具有更高性能的未来器件的过程中,业界最为关注的是采用硅通孔(TSV)技术的3D封装、堆叠式封装以及类似在3D上具有优势的技术,并且正悄悄在技术和市场上取得实实在在的进步。随着这些创新技术在更高系统集成中的应用,为系统提供更多的附加功能和特性,推动封装技术进入后摩尔时代。  相似文献   

6.
芯片工艺流程微缩和低介电值材料的限制,3D堆叠技术被视为能否以较小尺寸制造高效能芯片的关键,而硅通孔(TSV)可通过垂直导通整合晶圆堆叠的方式,达到芯片间的电路互连,有助于以更低的成本,提高系统的整合度与效能,是实现集成电路3D化的重要途径。未来,TSV的应用将取决于制造成本的进一步降低,业界对TSV发展途径的认识统一。  相似文献   

7.
采用硅通孔(TSV)技术的三维堆叠封装,是一种很有前途的解决方案,可提供微处理器低延迟,高带宽的DRAM通道.然而,在3D DRAM电路中,大量的TSV互连结构,很容易产生开路缺陷和耦合噪声,从而导致了新的测试挑战.通过大量的模拟研究.本文模拟了在三维DRAM电路的字线与位线中出现的TSV开路缺陷的故障行为,它作为有效...  相似文献   

8.
硅通孔(TSV)技术作为三维封装的关键技术,其可靠性问题受到广泛的关注。基于ANSYS平台,通过有限元方法,对3D堆叠封装的TSV模型进行了电-热-结构耦合分析,并进一步研究了不同的通孔直径、通孔高度以及介质隔离层SiO_2厚度对TSV通孔的电流密度、温度场及热应力分布的影响。结果表明:在TSV/微凸点界面的拐角处存在较大的电流密度和等效应力,容易引起TSV结构的失效;增大通孔直径、减小通孔长度可以提高TSV结构的电-热-机械可靠性;随着SiO_2层厚度的增加,通孔的最大电流密度增大而最大等效应力减小,需要综合考虑合理选择SiO_2层厚度。  相似文献   

9.
穿透硅通孔技术(TSV)是3D集成电路中芯片实现互连的一种新的技术解决方案,是半导体集成电路产业迈向3D封装时代的关键技术。在TSV制作主要工艺流程中,电镀铜填充是其中重要的一环。基于COMSOL Multiphysics平台,建立了考虑加速剂和抑制剂作用的硅通孔电镀铜仿真模型,仿真研究得到了基于硫酸铜工艺的最优电镀药水配方,并实验验证了该配方的准确性。  相似文献   

10.
主要针对三维集成封装中的关键技术之一的硅通孔互连技术进行电性能研究。首先简要介绍了硅通孔互连技术的背景,利用三维全波电磁仿真软件建立地.信号一地TSV模型,对其TDR阻抗和时域TDR/TDT信号进行分析,同时仿真分析了TSV互连线及介质基板所使用的材料和TSV半径、高度、绝缘层厚度等物理尺寸对三维封装中TSV信号传输性能的影响。研究结果可为工程设计提供有力的技术参考,有效地用于改善互连网络的S21,提高三维集成电路系统的性能。  相似文献   

11.
Schemes and key technologies of wafer-level three-dimensional integrated circuits (3D IC) are reviewed and introduced in this paper. Direction of wafer stacking, methods of wafer bonding, fabrication of through-silicon via (TSV), and classification of wafer type are options for 3D IC schemes. Key technologies, such as alignment, Cu bonding, and TSV fabrication, are described as well. Better performance, lower cost, and more functionality of future electronic products become feasible with 3D IC concept application.  相似文献   

12.
Laser‐assisted bonding (LAB) is an advanced technology in which a homogenized laser beam is selectively applied to a chip. Previous researches have demonstrated the feasibility of using a single‐tier LAB process for 3D through‐silicon via (TSV) integration with nonconductive paste (NCP), where each TSV die is bonded one at a time. A collective LAB process, where several TSV dies can be stacked simultaneously, is developed to improve the productivity while maintaining the reliability of the solder joints. A single‐tier LAB process for 3D TSV integration with NCP is introduced for two different values of laser power, namely 100 W and 150 W. For the 100 W case, a maximum of three dies can be collectively stacked, whereas for the 150 W case, a total of six tiers can be simultaneously bonded. For the 100 W case, the intermetallic compound microstructure is a typical Cu‐Sn phase system, whereas for the 150 W case, it is asymmetrical owing to a thermogradient across the solder joint. The collective LAB process can be realized through proper design of the bonding parameters such as laser power, time, and number of stacked dies.  相似文献   

13.
提出了一种应用于3D封装的带有硅通孔(TSV)的超薄芯片的制作方法。具体方法为通过刻蚀对硅晶圆打孔和局部减薄,然后进行表面微加工,最后从硅晶圆上分离出超薄芯片。利用两种不同的工艺实现了TSV的制作和硅晶圆局部减薄,一种是利用深反应离子刻蚀(DRIE)依次打孔和背面减薄,另一种是先利用KOH溶液湿法腐蚀局部减薄,再利用DRIE刻蚀打孔。通过实验优化了KOH和异丙醇(IPA)的质量分数分别为40%和10%。这种方法的优点在于制作出的超薄芯片翘曲度相较于CMP减薄的小,而且两个表面都可以进行表面微加工,使集成度提高。利用这种方法已经在实验室制作出了厚50μm的带TSV的超薄芯片,表面粗糙度达到0.02μm,并无孔洞地电镀填满TSV,然后在两面都制作了凸点,在表面进行了光刻、溅射和剥离等表面微加工工艺。实验结果证实了该方法的可行性。  相似文献   

14.
A wide range of requests coming from customer appears to demonstrate the feasibility of the TSV for a large range of via size and via AR either for process point of view or for performances point of view. The main application in the market is the CMOS image sensor with the integration of via at AR1. Now based on this first wafer level package of CMOS Image Sensor (CIS), the integration on the z axe will continue by the wafer lens integration for a continuous form factor and low cost module.First 3Di applications with TSV is entering the market with the via-last approach, more simply to be developed in semiconductor manufacturing in order to secure the 3Di technologies and to promote the 3Di to customers. Then specific design and electrical models will be developed and optimized allowing a fast and prosperous development of the via-first approach.A challenge in the modelisation of the TSV is the understanding of the mechanical impact of the trench and the metal filling on the behavior of the CMOS components and the reliability. These types of researches are progressing in various institutes and are essential for an increasing integration of TSV.Because actually, the technology continues to drive the 3D roadmap, the mechanical and thermal modelisation and 3D design tool need to be more activated to be developed faster in order to optimize the 3D module. Then the electrical testing will be a real challenge to be able to distinguish drift in the right strata, to be able to isolate a via within more than 10000 via in a module. The electrical testing will be strictly linked to mechanical and electrical failure analysis to get feed-back in technology, actual drawback of the 3D development.The cost of the 3Di and the TSV integration is more and more important and looks as a primary driver even if the functionalities increase faster than cost! Some steps have been already identified to be more costly steps: bonding and via filling. Indeed, throughput and material used have a direct impact on the final price.Continuous perspectives of TSV integration are progressing in order to optimise actual applications or to develop new integration. First challenging integration is the interposers with 3D interconnection allowing devices mounting on both side, like passive device integration or building of micro-cooling channels. The main interest of the 3D silicon interposer is the fact that it can connect chips at different locations and sizes, as example memory over digital IC. The usage of silicon as an interposer leads to an increase in the cost, but it will boost performances and reduce power consumption. One other advantage of the introduction of 3D interposer is the simplification of the required substrate implying a better mismatch of CTE lowering the packaging failure.In the wafer level package, TSV is now introduced to reduce the package footprint and mainly simplify the capping of device, similar to that for the MEMS. Indeed by integrating TSV, the capping must only protect the device against external environment, and not also take into account the electrical path in the bond layer degrading the hermiticity performance.To finish this paper, the sentence of Yann Guillou is the right situation: “The (3D) roadmaps need to be based on application requirements and not driven by technology ONLY. 3D Integration with TSV is not a scaling based concept Does it make sense today to think about submicron via diameter or dice thinner than 30 μm for example?” Applications need to take a risk by using 3D TSV technology!  相似文献   

15.
Wafer scale 3DI technology, so-called wafer-on-a-wafer (WOW), characterized by thinned-wafer stacking and Cu multi-level interconnects, has been developed, and revealed that seven-level multi-wafer stacking is possible. The WOW process differs from the chip-on-a-chip and chip-on-a-wafer processes and can be used for wafer-scale bulk processes, enabling manufacturing from transistor to 3D stacking using wafers. Wafers are thinned down to 20-μm and bonded to the base wafer following back-to-face stacking. Through-silicon-via (TSV) holes with a diameter of 30 μm are formed and etched-off until the lower electrode of Au which is patterned on the underneath wafer. Titanium (Ti) and titanium-nitride (TiN) are formed on a TSV hole as a barrier metal and electrode for the electrochemically plated Cu (ECP-Cu). After ECP-Cu deposition, surface planarization is performed using Surface Planer™. Those wafers are used as a base wafer and multi-stacking is carried out repeatedly. The vertical connection between Cu of TSV and Au is therefore connected with a self-aligned contact and without a bump electrode. The electrical properties of the 242-chain contacts within the wafer were measured and no open failure was found. Adopting the thinned substrates eliminates deep silicon etching, and TSV filling which take a long process time, and reduces the residual stress on the Cu plug. Wafers can be stacked as much as possible in accordance with the degree of integration, and this is expected to be a low-cost and high-integration technology for post-scaling.  相似文献   

16.
High density through silicon via (TSV) is a key in fabricating three-dimensional (3-D) large-scale integration (LSI). We have developed polycrystalline silicon (poly-Si) TSV technology and tungsten (W)/poly-Si TSV technology for 3-D integration. In the poly-Si TSV formation, low-pressure chemical vapor deposition poly-Si heavily doped with phosphorus was conformally deposited into the narrow and deep trench formed in a Si substrate after the surface of Si trench was thermally oxidized. In the W/poly-Si TSV formation, tungsten was deposited into the Si trench by atomic layer deposition method after the poly-Si deposition, where poly-Si was used as a liner layer for W deposition. The 3-D microprocessor test chip, 3-D memory test chip, 3-D image sensor chip, and 3-D artificial retina chip were successfully fabricated by using poly-Si TSV.   相似文献   

17.
硅通孔(Through silicon via)的互连技术是3D IC集成中的一种重要工艺。报道了一种高深宽比的垂直互连穿透硅通孔工艺,其通孔的深宽比达到50以上;研究了利用钨填充硅通孔的一些关键工艺,包括阻挡层淀积工艺和钨填充工艺,分析了不同填充工艺所造成的应力的变化。最后获得了一种深宽比达到58∶1的深硅通孔无缝填充。  相似文献   

18.
论述了TSV技术发展面临的设备问题,并重点介绍了深硅刻蚀、CVD/PVD沉积、电镀铜填充、晶圆减薄、晶圆键合等几种制约我国TSV技术发展的关键设备。  相似文献   

19.
应用于MEMS封装的TSV工艺研究   总被引:1,自引:1,他引:0  
开展了应用于微机电系统(MEMS)封装的硅通孔(TSV)工艺研究,分析了典型TSV的工艺,使用Bosch工艺干法刻蚀形成通孔,气体SF6和气体C4F8的流量分别为450和190 cm3/min,一个刻蚀周期内的刻蚀和保护时长分别为8和3 s;热氧化形成绝缘层;溅射50 nm Ti黏附阻挡层和1μm Cu种子层;使用硫酸铜和甲基磺酸铜体系电镀液电镀填充通孔,比较了双面电镀和自下而上电镀工艺;最终获得了硅片厚度370μm、通孔直径60μm TSV加工工艺。测试结果证明:样品TSV无孔隙;其TSV电阻值小于0.01Ω;样品气密性良好。  相似文献   

20.
提出了一种基于硅通孔(TSV)和激光刻蚀辅助互连的改进型CMOS图像传感器(CIS)圆片级封装方法.对CIS芯片电极背部引出的关键工艺,如锥形TSV形成、TSV绝缘隔离、重布线(RDL)等进行了研究.采用低温电感耦合等离子体增强型化学气相淀积(ICPECVD)的方法实现TSV内绝缘隔离;采用激光刻蚀开口和RDL方法实现CIS电极的背部引出;通过采用铝电极电镀镍层的方法解决了激光刻蚀工艺中聚合物溢出影响互连的问题,提高了互连可靠性.对锥形TSV刻蚀参数进行了优化.最终在4英寸(1英寸=2.54 cm)硅/玻璃键合圆片上实现了含有276个电极的CIS圆片级封装.电性能测试结果表明,CIS圆片级封装具有良好的互连导电性,两个相邻电极间平均电阻值约为7.6Ω.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号