首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
王卓  周锌  陈钢  杨文  庄翔  张波 《微电子学》2015,45(6):812-816
针对超薄层高压SOI线性变掺杂(Linear Varied Doping,LVD)LDMOS器件,进行了耐压模型和特性的研究。通过解泊松方程,得到超薄高压SOI LVD LDMOS的RESURF判据,有助于器件耐压和比导通电阻的设计与优化。通过对漂移区长度、厚度和剂量,以及n型缓冲层仿真优化,使器件耐压与比导通电阻的矛盾关系得到良好的改善。实验表明,超薄层高压SOI LVD LDMOS的耐压达到644 V,比导通电阻为24.1 Ω·mm2,击穿时埋氧层电场超过200 V/cm。  相似文献   

2.
葛梅  王颖 《半导体技术》2011,36(2):108-111,123
研究了一种具有浮栅结构的SOI LDMOS(FGSOI LDMOS)器件模型,并分析了该结构的耐压机理,通过Silvaco TCAD软件对该结构进行仿真优化。通过仿真验证可知,该结构通过类场板的结终端技术可以调节器件的横向电场,从而得到比普通SOI LDMOS器件更高的耐压并且降低了器件的比导通电阻。仿真结果表明,该结构与普通SOI LDMOS器件结构在相同的尺寸条件下耐压提高了41%,比导通电阻降低了21.9%。  相似文献   

3.
具有电阻场板的薄膜SOI-LDMOS的精确解析   总被引:3,自引:3,他引:0  
介绍了一种对具有电阻场板的薄膜SOI LDMOS的精确解析设计方法.在对电场分析的基础上,提出了新的电离率模型,并求出了电离率积分的准确路径,进而得到击穿电压、漂移区掺杂、漂移区长度与SOI硅层厚度、埋氧层厚度的关系.模拟结果表明,解析与模拟结果具有很好的一致性,而且设计的器件具有击穿电压大、比导通电阻极小的优点.该解析理论为在薄膜SOI材料上制作性能优良的高压功率器件提供了一个很好的参考  相似文献   

4.
李欢  陈星弼 《微电子学》2019,49(1):125-131
提出了一种带n型浮空埋层的超低比导通电阻的变k槽型LDMOS(TLDMOS)。新结构在漂移区内引入变介电常数(VK)的深槽结构和自驱动的U型p区,不仅可提高漂移区的掺杂浓度,还可优化体内电场分布。衬底中引入的n埋层在器件阻断时进一步调制漂移区的电场分布。同时,额外p衬底/n埋层结的引入提高了LDMOS的纵向耐压。导通时,由于集成低压电源施加于U型p区,在其周围产生的电子积累层使器件在不增加栅电荷的情况下显著降低了比导通电阻(Ron,sp)。仿真结果表明,与传统TLDMOS相比,在相同元胞尺寸下,新结构的击穿电压提高了59.3%,Ron,sp降低了86.3%。  相似文献   

5.
孙旭  陈星弼 《微电子学》2019,49(1):132-135
提出了一种在N型外延层中带有P型场环的积累层LDMOS。当器件耐压时,N型漂移区中浮空P型场环能调节漂移区的电场分布,以提高器件的耐压。当器件正向导通时,漂移区上方介质层的多晶硅二极管会在漂移区表面形成一层电子积累层,大幅提高器件的导电能力,从而降低器件的比导通电阻。数值仿真结果表明,该LDMOS的比导通电阻从传统结构的371 mΩ·cm2降低到60.9 mΩ·cm2。相比于没有场环的传统结构,该LDMOS的耐压从660 V提高到765 V。  相似文献   

6.
针对薄外延横向功率集成技术的发展,提出一种降低体内电场REBULF(REduced BULk Field)的新耐压技术,并设计了一例具有n+浮空层的REBULF LDMOS新结构.新耐压机理是通过嵌入在高阻衬底中的n+浮空层的等电位调制作用,提高源端体内低电场而降低漏端体内高电场使纵向电场重新分配,同时使衬底耐压提高.借助二维数值分析,验证了满足REBULF的条件为n+层的位置与衬底浓度的乘积不大于1×1012cm-2;在保证低的比导通电阻条件下,新结构较传统LDMOS结构击穿电压可提高75%以上.  相似文献   

7.
高压LDMOS场极板的分析与设计   总被引:1,自引:0,他引:1  
场板是高压LDMOS中普遍使用的一种结终端技术,对单阶梯LDMOS场板的长度、其下方氧化层厚度以及场氧侵蚀厚度等参数进行了模拟和分析,在此基础上设计了一种新型体硅双阶梯场板LDMOS,并对其具体参数进行了细致的模拟和分析.模拟结果表明,双阶梯场板LDMOS的击穿电压比单阶梯场板LDMOS提高了15.3%,导通电阻降低了17.1%,电流驱动能力也提高了8.5%.  相似文献   

8.
提出了一种具有超低比导通电阻的L型栅漏极LDMOS器件。该器件在两个氧化槽中分别制作L型多晶硅槽栅。漏极n型重掺杂区向下延伸,与衬底表面重掺杂的n型埋层相接形成L型漏极。L型栅极不仅可以降低导通电阻,还具有纵向栅场板的特性,可有效改善表面电场分布,提高击穿电压。L型漏极为电流提供了低阻通路,降低了导通电阻。另外,氧化槽折叠漂移区使得在相同耐压下元胞尺寸及导通电阻减小。二维数值模拟软件分析表明,在漂移区长度为0.9 μm时,器件耐压达到83 V,比导通电阻仅为0.13 mΩ·cm2。  相似文献   

9.
高k介质阶梯变宽度SOI LDMOS   总被引:1,自引:0,他引:1       下载免费PDF全文
本文提出了一种具有高k介质阶梯变宽度结构的新型的SOI LDMOS器件,该器件通过在漂移区内引入介质区域使得漂移区的宽度呈阶梯变化.借助三维器件仿真软件DAVINCI对其势场分布及耐压特性进行了深入分析.首先,阶梯变宽度结构能够在漂移区内引入新的电场峰值来优化势场分布,提高击穿电压.其次,采用高k材料作为侧壁介质区域可以进一步优化漂移区内势场分布,并提高漂移区浓度来降低导通电阻.结果表明,与常规结构相比,新器件的击穿电压可提高42%,导通电阻可降低37.5%,其FOM优值是常规器件的3.2倍.  相似文献   

10.
《电子与封装》2015,(8):34-37
通过器件仿真软件Silvaco对带单层浮空场板的高压LDMOS(Lateral Double-diffused MOSFET)器件进行了设计与优化。仿真结果表明:对于击穿电压为600 V的RESURF(reduced surface field)LDMOS器件,场板能够有效地优化器件表面电势分布,降低电场峰值,提高器件的击穿电压。其中场板的数量、长度等参数对高压RESURF-LDMOS器件的耐压有较大影响。并且场板结构增加了double RESURF器件P-top剂量的容差范围,影响了器件的导通电阻。  相似文献   

11.
针对600 V以上SOI高压器件的研制需要,分析了SOI高压器件在纵向和横向上的耐压原理。通过比较提出薄膜SOI上实现高击穿电压方案,并通过仿真预言其可行性。在埋氧层为3μm,顶层硅为1.5μm的注氧键合(Simbond)SOI衬底上开发了与CMOS工艺兼容的制备流程。为实现均一的横向电场,设计了具有线性渐变掺杂60μm漂移区的LDMOS结构。为提高纵向耐压,利用场氧技术对硅膜进行了进一步减薄。流片实验的测试结果表明,器件关态击穿电压可达600 V以上(实测832 V),开态特性正常,阈值电压提取为1.9 V,计算开态电阻为50Ω.mm2。  相似文献   

12.
李琦  李海鸥  翟江辉  唐宁 《半导体学报》2015,36(2):024008-5
A new high-voltage LDMOS with folded drift region(FDR LDMOS) is proposed. The drift region is folded by introducing the interdigital oxide layer in the Si active layer, the result of which is that the effective length of the drift region is increased significantly. The breakdown characteristic has been improved by the shielding effect of the electric field from the holes accumulated in the surface of the device and the buried oxide layer. The numerical results indicate that the breakdown voltage of 700 V is obtained in the proposed device in comparison to 300 V of conventional LDMOS, while maintaining low on-resistance.  相似文献   

13.
借助软件模拟从器件结构和工艺参数角度研究了LDMOS漏电容Cd的非线性和源漏电压Vds的关系,研究了漂移区注入剂量、高压场板长度、场氧化层厚度、栅氧化层厚度、沟道区注入剂量等五个结构工艺参数对漏电容非线性的影响.主要分析了漂移区耗尽层对漏电容非线性的影响机理以及不同结构工艺参数如何通过改变漂移区耗尽层电容,进而影响漏电容非线性.提出了改善LDMOS的漏电容线性度的各参数调节方法.  相似文献   

14.
分析了一个用阱作为耐高压漂移区的LDMOS的导通电阻,提出了带有场极板的高阻漂移区导通电阻的计算公式,改进了双扩散沟道导通电阻的计算公式. 针对一个LDMOS的例子做了计算,并将其与相同参数情况下用MEDICI软件模拟的结果作了对比. 结果表明两者相差仅5%,这说明所得公式可用于该类型LDMOS的分析和设计.  相似文献   

15.
In this paper, a new theoretical breakdown model of SOI RESURF LDMOS with step drift doping profile is proposed. According to this model, the 2-D electric field distributions of drift regions are investigated for both the incompletely and completely depleted cases. The doping profile and step number are optimized to improve the breakdown voltage and reduce fabrication cost. Finally, SOI LDMOS with various step numbers have been made using a 3 μm-thick top silicon layer and a 1.5 μm-thick buried oxide layer. The experiment results indicate that two-step drift doping can enable increase in the breakdown voltage by as much as 40% and decrease in the on-resistance by as much as 16% in comparison to the conventional LDMOS with uniformly doped drift region.  相似文献   

16.
具有补偿埋层的槽型埋氧层SOI高压器件新结构   总被引:3,自引:3,他引:0  
赵秋明  李琦  唐宁  李勇昌 《半导体学报》2013,34(3):034003-4
A new silicon-on-insulator(SOI) high-voltage MOSFET structure with a compensation layer on the trenched buried oxide layer(CL T-LDMOS) is proposed.The high density inverse interface charges at the top surface of the buried oxide layer(BOX) enhance the electric field in the BOX and a uniform surface electric field profile is obtained,which results in the enhancement of the breakdown voltage(BV).The compensation layer can provide additional P-type charges,and the optimal drift region concentration is increased in order to satisfy the reduced surface electric field(RESURF) condition.The numerical simulation results indicate that the vertical electric field in the BOX increases to 6 MV/cm and the B V of the proposed device increases by 300%in comparison to a conventional SOI LDMOS,while maintaining low on-resistance.  相似文献   

17.
提出非均匀厚度漂移区SOl高压器件新结构及其优化设计方法.非均匀厚度漂移区调制SOI层的电场并增强埋层电场,从而 提高器件击穿电压.考虑到这种调制效应.提出解析模型用以优化设计该新器件的结构参数.借助解析模型,研究了电场分布和器件击穿电压与结构参数的关系.数值仿真'证实了解析模型的正确性.具有3阶梯的非均匀厚度漂移区SOl器件耐压为常规结构SOl器件的2倍,且保持较低的导通电阻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号