首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
一种基于噪声抵消技术的宽带低噪声放大器   总被引:1,自引:0,他引:1  
设计了一种应用于全球数字广播 (Digital Radio Mondiale,DRM)和数字音频广播 (Digital Audio Broadcasting,DAB) 的宽带低噪声放大器.采用噪声抵消结构,抵消输入匹配器件在输出端所产生的热噪声和闪烁噪声,使输入阻抗匹配和噪声优化去耦.电路采用华润上华CSMC 0.6 μm CMOS工艺实现.测试结果表明,3 dB带宽为100 kHz~213 MHz,最大增益为16.2 dB, S11和S22小于-7.5 dB, 最小噪声系数为3.3 dB, 输入参考的1 dB增益压缩点为-3.8 dBm,在5 V电源电压下,功耗为51 mW,芯片面积为0.18 mm2.  相似文献   

2.
宽带低噪声放大器的输入匹配需要兼顾阻抗匹配和噪声匹配.通常,这两个指标是耦合在一起的.现有的宽带匹配技术需要反复协调电路参数,在阻抗匹配和噪声匹配之间折衷,给设计增大了难度.提出一种噪声抵消技术,通过两条并联的等增益支路,在输出端消除了输入匹配网络引入的噪声,实现阻抗匹配和噪声匹配的去耦.基于Jazz 0.35 μm SiGe工艺,设计了一款采用该噪声抵消技术的宽带低噪声放大器.放大器的工作带宽为0.8-2.4 GHz,增益在 16 dB以上,噪声系数小于3.25 dB, S11在-17 dB以下.  相似文献   

3.
采用噪声抵消及多重功耗优化技术,提出了一种超宽带低噪声低功耗放大器。它主要包括采用RL网络的共栅输入级、电流复用型噪声抵消级、放大输出级以及偏置电路四个部分。验证结果表明,该放大器,在2-6GHz频带内,增益(S21)可以在14dB以上;输入回波损耗(S11)小于-10dB;输出回波损耗(S22)小于-25dB;噪声系数(NF)小于3.2dB;在3.8V的工作电压下,功耗仅为14mW。  相似文献   

4.
设计了一款"基于噪声抵消技术的低功耗C频段的差分低噪声放大器。该放大器由输入级、放大级以及输出缓冲级3个模块构成,其中输入级采用电容交叉耦合的差分对与直接交叉耦合结构差分对级联,实现输入匹配及噪声抵消;放大级采用具有电阻-电感并联反馈的电流复用结构来获得高的增益、良好的增益平坦性及低的功耗;输出缓冲级采用源跟随器结构,实现良好的输出匹配。基于TSMC 0.18μm CMOS工艺库,验证表明在C频段,放大器的增益为20.4设计了一款??基于噪声抵消技术的低功耗C频段的差分低噪声放大器。该放大器由输入级、放大级以及输出缓冲级3个模块构成,其中输入级采用电容交叉耦合的差分对与直接交叉耦合结构差分对级联,实现输入匹配及噪声抵消;放大级采用具有电阻-电感并联反馈的电流复用结构来获得高的增益、良好的增益平坦性及低的功耗;输出缓冲级采用源跟随器结构,实现良好的输出匹配。基于TSMC 0.18 μm CMOS工艺库,验证表明在C频段,放大器的增益为20.4??0.5 dB,噪声系数介于2.3~2.4 dB之间,输入和输出的回波损耗均优于-11 dB,稳定因子恒大于1,在6.5 GHz下,1 dB压缩点为-16.6 dBm,IIP3为-7 dBm,在2.5 V电压下,电路功耗仅为6.75 mW。  相似文献   

5.
设计了一种应用于宽带(0.8~3.0GHz)接收机的低电压低功耗低噪声放大器。该放大器以折叠的共源共栅结构为基础,采用噪声抵消结构,通过两条并联的等增益支路来抵消匹配器件在输出端所产生的噪声,实现输入阻抗匹配和噪声优化。电路采用0.18μm CMOS工艺,利用Cadence软件进行设计和仿真。结果表明,该低噪声放大器在0.8~3.0GHz带宽范围内噪声系数(NF)小于3.2dB,电压增益(S21)在17.6~18.5dB之间,S11小于-12dB,S22小于-20dB,在0.8V电源电压下,功耗为9.7mW,版图面积为0.18mm2。  相似文献   

6.
应用于无线传感器网络的低噪声放大器设计   总被引:1,自引:0,他引:1       下载免费PDF全文
给出一种基于SMIC0.13μm RFCMOS工艺、应用于无线传感器网络2.4GHz的低噪声放大器设计。设计目标为在2.43GHz的中心频率下带宽为120MHz,并且增益分为高20dB、中10dB及低0dB三档可调。电路采用功率和噪声优化技术,输入端采用片外电感匹配,输入输出都匹配到50Ω阻抗。在Cadence Spectre仿真环境下的后仿真结果表明:高增益时S21为21.2dB而噪声系数为0.5dB,S11为-29.8dB,S22为-20.7dB。电路在1.2V电源电压下的工作电流约为6mA。  相似文献   

7.
基于IEEE802.11a标准描述了一款SiGe HBT低噪声放大器(LNA)的设计.为适应该标准的要求,给出了噪声、功率增益及稳定性的优化方法.选用SiGe HBTs作为有源元件,采用T型输入、输出匹配网络设计了电路,并用安捷伦ADS-2006A软件对噪声系数、增益等各项指标进行了仿真.最终在频率为5.2 GHz下,LNA噪声系数F为1.5 dB,增益S21达到12.6 dB,输入、输出反射系数S11和|S22较好,在工作频带内小于-10 dB,LNA性能良好.  相似文献   

8.
李景峰 《电子器件》2009,32(4):771-773
设计了一种应用于DVB-S标准的数字电视调谐器的宽带放大器.采用电阻负反馈输入匹配结构,把交流反馈和直流偏置结合在一起,在噪声、增益和线性度方面达到了很好的性能,满足射频电视调谐器的应用需要.此低噪声放大器有约2.5 GHz的3 dB带宽,大于20 dB的电压增益,输入匹配优于-14 dB,噪声系数低于3.3 dB,IIP3在2.5 dBm之上.此LNA的输入匹配、线性度、噪声性能作了较为详细的讨论.  相似文献   

9.
实现了一款超宽带低噪声放大器( UWB LNA)。该UWB LNA由输入级、中间级和输出级组成。在输入级,采用两个共栅配置构成了噪声抵消技术,减少了噪声,在此结构基础上进一步采用了跨导增强技术,提高了增益。同时插入的电感Lin提高了LNA在宽带范围内的增益平坦度。中间级放大器,在漏极并联电感产生零点,提高了LNA的带宽。输出级为源极跟随器,较好实现了LNA的阻抗匹配。基于0.18μm TSMC CMOS工艺仿真验证表明,在4 GHz~10 GHz频带范围内,电压增益( S21)为(19.2±0.3)dB,噪声系数(NF)介于2.1 dB~2.4 dB之间,输入、输出反射系数(S11、S22)均小于-10 dB。在9 GHz时,输入三阶交调点(IIP3)达到-7 dBm。在1.8 V的电源电压下,功耗为28.6 mW。  相似文献   

10.
本文实现了一款低功耗的宽带低噪声放大器(LNA)。该低噪放由输入级、中间级和输出级组成。由于每一级都采用了电流复用技术,显著地降低了功耗。输入级通过电阻、电容负反馈和并联电感,实现了良好的输入匹配。引入电感抵消了电容产生的虚部阻抗并且抵消了电容产生的极点。与电阻负反馈放大器相比,本文提出的结构提高了增益。中间级通过并联电感引入零点,采用低Q值拓展带宽。输出级是源级跟随器,提供了良好的输出匹配。经0.18 μm TSMC CMOS工艺仿真验证,在3 V的电源电压下,功耗仅为4.89 mW。另外在1~4.5 GHz频带范围内,电压增益(S21)为14.8±0.4 dB,噪声系数(NF)介于3.1~4.2 dB之间,输入、输出反射系数(S11、S22)均小于-10 dB。在4GHz时,输入三阶交调点(IIP3)达到-11dBm。  相似文献   

11.
CMOS宽带线性可变增益低噪声放大器设计   总被引:1,自引:0,他引:1  
文章设计了一种48MHz~860MHz宽带线性可变增益低噪声放大器,该放大器采用信号相加式结构电路、控制信号转换电路和电压并联负反馈技术实现。详细分析了线性增益控制、输入宽带匹配和噪声优化方法。采用TSMC0.18μm RF CMOS工艺对电路进行设计,仿真结果表明,对数增益线性变化范围为-5dB~18dB,最小噪声系数为2.9dB,S11和S22小于-10dB,输入1dB压缩点大于-14.5dBm,在1.8V电源电压下,功耗为45mW。  相似文献   

12.
杨凯  王春华  戴普兴 《微电子学》2008,38(2):275-279
提出了一种具有大范围连续增益变化的3~5 GHz CMOS可调增益低噪声放大器.采用两级共源共栅电路结构,二阶切比雪夫滤波器作为输入,源跟随器作为输出,在带内获得了良好的输入输出匹配和噪声性能.通过控制第二级的偏置电流,获得了36 dB的连续增益可调,同时也不影响输入输出匹配.该电路基于TSMC 0.18 μm CMOS工艺,在最高增益时,输入和输出反射系数S11和S22分别小于-10.1 dB 和-15 dB,最高增益达到23.8 dB,最小噪声系数仅为1.5 dB,三阶交调截点为-7 dBm,在1.2 V电压下,功耗为6.8 mW;芯片面积0.71 mm2(0.96 mm×0.74 mm).  相似文献   

13.
采用中国电子科技集团公司第十三研究所的GaAs PHEMT低噪声工艺,设计了一款2~4 GHz微波单片集成电路低噪声放大器(MMIC LNA)。该低噪声放大器采用两级级联的电路结构,第一级折中考虑了低噪声放大器的最佳噪声和最大增益,采用源极串联负反馈和输入匹配电路,实现噪声匹配和输入匹配。第二级采用串联、并联负反馈,提高电路的增益平坦度和稳定性。每一级采用自偏电路设计,实现单电源供电。MMIC芯片测试结果为:工作频率为2~4 GHz,噪声系数小于1.0 dB,增益大于27.5 dB,1 dB压缩点输出功率大于18 dBm,输入、输出回波损耗小于-10 dB,芯片面积为2.2 mm×1.2 mm。  相似文献   

14.
介绍了一种宽带CMOS低噪声放大器设计方法,采用噪声抵消技术消除输入MOS管的噪声贡献.芯片采用TSMC 0.25μm 1P5M RF CMOS工艺实现.测试结果表明:在50~860MHz工作频率内,电压增益约为13.4dB;噪声系数在2.4~3.5dB之间;增益1dB压缩点为-6.7dBm;输入参考三阶交调点为3.3dBm.在2.5V直流电压下测得的功耗约为30mW.  相似文献   

15.
一种用于电视调谐器的宽带CMOS低噪声放大器设计   总被引:1,自引:0,他引:1  
廖友春  唐长文  闵昊 《半导体学报》2006,27(11):2029-2034
介绍了一种宽带CMOS低噪声放大器设计方法,采用噪声抵消技术消除输入MOS管的噪声贡献.芯片采用TSMC 0.25μm 1P5M RF CMOS工艺实现.测试结果表明:在50~860MHz工作频率内,电压增益约为13.4dB;噪声系数在2.4~3.5dB之间;增益1dB压缩点为-6.7dBm;输入参考三阶交调点为3.3dBm.在2.5V直流电压下测得的功耗约为30mW.  相似文献   

16.
提出了一款新型的双频段可变增益放大器(DBVGA),分别工作在3G-WCDMA的2.2GHz和WLAN的5.2GHz两个频段。放大器分为增益控制级、输入输出级和放大级。其中,增益控制级采用电流驱动技术和发射极串联电感来减小噪声和输入阻抗的影响,进而实现大动态的增益变化。输入级通过电容电感串并联方法实现双频段的输入匹配。放大级使用Cascode结构和电流复用技术来提高增益和减小功耗。采用Jazz 0.35μm SiGe BiCMOS工艺设计芯片版图,版图面积为0.5mm2。仿真结果表明,当控制电压从0V到1.4V变化时,DBVGA在2.2GHz和5.2GHz下的增益可变范围分别达到30dB和16dB,最大增益处的噪声分别为2.3dB和3.2dB,输入和输出驻波比约1.5。  相似文献   

17.
采用有源电感,设计了一款增益可调且平坦的超宽带低噪声放大器(FTG UWB-LNA)。在输入级,采用具有新型偏置电路和RLC反馈的共基-共射放大器来实现良好的宽带输入阻抗匹配;在放大级,采用由新型有源电感与达林顿结构构成的组合电路,来实现增益的可调性、平坦化和幅度提升。在输出级,采用电阻并联和电流镜偏置的共集放大器,来实现良好的输出阻抗匹配。基于WIN 0.2μm GaAs HBT工艺库,对FTG UWB-LNA进行验证,结果表明:在1-6GHz频带内,增益(S21)可以在21.16dB-23.9dB之间调谐,最佳增益平坦度达到±0.65dB;输入回波损耗(S11)小于-10dB;输出回波损耗(S22)小于-12dB;噪声系数(NF)小于4.08dB;在4V的工作电压下,静态功耗小于33mW。  相似文献   

18.
采用ADS软件设计并仿真了一种应用于WiMax2标准的低噪声放大器。该低噪声放大器基于TSMC 0.13μmCMOS工艺,工作带宽为2.3 GHz~2.7GHz。在电路设计中采用噪声抵消技术降低CMOS管的电流噪声。使用共栅极结构进行输入匹配,使用电容进行输出匹配。偏置电路采用电流镜原理。使用ADS2006软件进行设计、优化和仿真。仿真结果显示,在2.3 GHz~2.7GHz带宽内,放大器的电源电压在1.2V时,噪声系数低于1.96dB,增益大于21.8dB,整个电路功耗为9mW。  相似文献   

19.
本文给出了一个低电压、低功耗增益连续可调CMOS超宽带低噪声放大器(Ultra-wideband Low Noise Amplifier,UWB LNA)设计。在0.85V工作电压下放大器的直流功耗约为10mW。在3.1~10.6GHz的超宽带频段内,增益S21为14±0.4dB,且随控制电压VC连续可调。输入、输出阻抗匹配S11、S22均低于-10dB,噪声系数(NF)最小值为3.3dB。设计采用TSMC 0.18μm RF CMOS工艺完成。  相似文献   

20.
20GHz宽带GaAs PHEMT分布式前置放大器   总被引:3,自引:0,他引:3       下载免费PDF全文
采用0.5μm GaAs PHEMT工艺研制了一种光接收机分布式前置放大器.该放大器-3dB带宽接近20GHz,跨阻增益约46dBΩ;在50MHz~16GHz范围内,输入、输出电压驻波比(VSWR)均小于2;带内噪声系数在3.03~6.5dB之间,平均等效输入噪声电流密度约为14.6pA/ Hz ;在输入10Gb/s非归零(NRZ)伪随机二进制序列(PRBS)信号下,放大器输出眼图清晰,具有12ps的定时抖动和166mV峰峰电压.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号