首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
刚果(金)复杂铜钴合金两段浸出工艺研究   总被引:3,自引:2,他引:1  
采用一段直接酸浸出-二段氧化酸浸工艺从复杂铜钴合金中浸出钴、铜、铁,考察了浸出工艺条件对铜、钴、铁浸出率的影响。结果表明,一段最佳浸出工艺条件为:液固比10∶1,温度85 ℃,硫酸初始浓度1.8 mol/L,搅拌转速 300 r/min,浸出时间2 h;二段最佳浸出工艺条件为:液固比10∶1,温度90 ℃,硫酸初始浓度4.0 mol/L,搅拌转速350 r/min,氯酸钠用量20%,浸出时间6 h。在此条件下,钴、铜、铁的总浸出率达96.99%、99.56%和98.16%。  相似文献   

2.
从铋渣中回收铜铋实验研究   总被引:2,自引:2,他引:0  
采用硫酸和盐酸两段浸出, 使铋渣中的铜和铋与其他有价金属分离, 再经旋流电解提取浸出液中的铜和铋, 从而回收铋渣中的铜和铋。实验结果表明, 硫酸浸出铜工序中, 在硫酸用量为理论量的3倍、双氧水用量为原料的40%、液固比5∶1、浸出温度70~80 ℃、浸出时间2 h条件下, 铜浸出率达91%; 浸铜后的渣用盐酸浸出铋, 在盐酸用量为理论量的2~3倍、液固比5∶1、浸出温度70~80 ℃、浸出时间2 h条件下, 铋浸出率达98%。对含铜浸出液和含铋浸出液进行旋流电解, 得到含铜99.95%的阴极铜及含铋96.78%的粗铋, 且铜回收率达99.0%, 铋回收率达98.0%。  相似文献   

3.
某硫酸渣-0.043 mm占65%,铜品位为0.81%,其中硫酸铜占总铜的40.74%,自由氧化铜占总铜的30.87%,硫化铜占总铜的8.64%,结合铜占总铜的19.75%,属宝贵的二次资源。为开发利用该二次资源,采用硫酸酸浸工艺进行了铜回收试验。结果表明,硫酸渣在不磨矿、浸出酸度为18%,浸出时间为4 h,液固比为4∶1,浸出温度为50℃,搅拌转速为500 r/min,BKJ用量为3%的情况下浸出,铜浸出率可达78.46%。  相似文献   

4.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

5.
针对国外某渣选硫化铜精矿,采用加温铁氧化酸浸工艺回收其中铜,考察了氧化剂用量、浸出温度、浸出时间、初始硫酸浓度、液固比等因素对渣选硫化铜精矿中Cu浸出率的影响。结果表明,适宜的浸出条件为:氧化剂赤铁矿用量0.2 g/g、浸出温度85℃、浸出时间6 h、液固比5∶1、初始硫酸浓度200 g/L,此时铜浸出率可达97.96%。不同类型氧化剂验证试验结果表明,赤铁矿和磁铁矿在酸浸体系中均有较好的氧化性,可实现渣选硫化铜精矿中铜在中温条件下浸出,且三价铁化合物纯度越高,铜氧化浸出效果越好。  相似文献   

6.
为回收含铜44.7%的高铜铅冰铜中的有价金属, 进行了氧压酸浸实验研究。考察了初始硫酸浓度、氧压、时间、温度、液固比和木质素用量对浸出效果的影响, 结果表明, 氧压酸浸高铜铅冰铜的适宜工艺条件为: 浸出温度140 ℃、氧分压0.5 MPa、浸出时间4 h、液固比7∶1、初始硫酸浓度180 g/L, 该条件下Cu、As、Fe、Sb、Pb浸出率分别为99.57%、12.24%、86.33%、85.73%、38.10%, 实现了铜的高效浸出。浸出渣主要成分为PbSO4, 实现了铅冰铜中铜与铅的分离。木质素用量对铅冰铜中有价金属的浸出效果影响较小。  相似文献   

7.
铜阳极泥综合渣中碲的回收   总被引:2,自引:0,他引:2  
姜国敏 《金属矿山》2008,38(6):142-144
某铜冶炼厂铜电解阳极泥处理过程中产生的综合渣中含碲量较高,为此进行了从该渣中浸出碲的试验研究。试验结果表明:采用常规酸浸工艺不能获得令人满意的碲浸出率;而采用以硫酸为浸出剂、KMnO4为氧化剂的氧化酸浸工艺,在浸出温度为80 ℃、液固质量比为5:1、KMnO4用量为0.008 g/g(对原料)、硫酸浓度为3.6 mol/L、浸出时间为5 h的条件下,碲的浸出率达到90.09%,同时可使渣中97.81%的铜被浸出,浸出液可进一步提取碲和铜。  相似文献   

8.
李雨  王鑫  郑睿  陈雯  雷鹰 《金属矿山》2020,49(4):217-220
在原材料化学成分和物相组成分析的基础上,对微波辅助浸出某铜含量为12.67%、锌含量为9.85%的铜熔炼烟灰中Cu、Zn元素的可行性进行了研究。考察了硫酸浓度、液固比、浸出温度和浸出时间对Cu、Zn浸出率的影响,结果显示,在硫酸浓度为5 mol/L、液固比为10 mL/g、浸出温度80 ℃、浸出时间2 h条件下,铜、锌浸出率分别为95.11%、95.92%。对浸渣分析表明,浸渣主要为残余的碳及铁硅酸盐,铁酸铜、铁酸锌经硫酸浸出后生成磁铁矿,浸渣中部分大颗粒碎裂成较小颗粒,且颗粒表面有裂缝和孔产生,浸渣疏松多孔。  相似文献   

9.
某低品位含铜硫酸渣铜品位为0.29%,铁品位为56.11%,直接采用浮选或硫酸浸出均无法回收硫酸渣中的铜,且影响最终铁精矿的质量,造成铜、铁资源浪费。研究发现,硫酸渣经还原焙烧后,铜主要以硫化铜形式存在,矿物嵌布粒度较细。探讨了浸出剂硫酸浓度、磨矿细度、浸出温度、液固比、浸出时间等参数对还原焙烧后硫酸渣中铜浸出的影响。在浸出剂H2SO4体积浓度为3%、磨矿细度-0.045mm占74.55%、浸出温度70℃、固液比1∶4(g/mL)、浸出时间为3h的最佳浸出条件下,铜的浸出率为77.63%,浸渣Cu含量为0.066%。硫酸渣原样经还原焙烧—磨矿—铜浸出—磁选分离试验,铜的浸出率可达82.68%,还可得到铁品位为66.45%、含铜品位为0.052%的合格铁精矿。实现了硫酸渣中铜、铁资源的回收。  相似文献   

10.
硫化铜钴精矿经硫酸化焙烧-酸浸后得到的浸出渣,仍含有较多的铜和钴。针对此铜钴浸出渣进行了加压浸出工艺研究。结果表明:液固比6:1,初始硫酸浓度100g/L,常温预浸30min后,在浸出温度180℃,氧气分压0.1MPa,浸出3h等条件下,铜和钴的浸出率分别达到96.5%和98.1%,铁浸出率约8.3%,大部分的铁抑制在渣中。  相似文献   

11.
采用硫化物作助剂强化溶浸酸浸渣中的氧化铁。分别进行了助浸剂用量、硫酸用量、时间、温度、液固比等条件试验, 考察其对酸溶效果的影响, 结果表明: 当助剂与渣质量比为0.69∶1, 硫酸过剩系数为1.4, 起始液固比为2∶1, 搅拌速度为1 300 r/min时, 在95 ℃下反应2 h, 铁的浸取率可以达到89.2%, 助剂中锌的浸出率为90.2%, 尾渣易于进一步提金。与现行技术条件相比, 硫酸用量大大减少, 工艺简单, 能耗低。  相似文献   

12.
铜烟尘加压浸出工艺研究   总被引:4,自引:3,他引:1  
采用加压酸浸工艺处理铜烟尘, 研究了反应温度、反应时间、初始硫酸浓度、液固比、氧压等对铜、锌浸出率的影响。最佳浸出工艺条件为:初始酸度0.5 mol/L、液固比10∶1、反应温度115 ℃、反应时间2 h、搅拌转速500 r/min、氧压0.4 MPa, 此时Cu、Zn浸出率分别为95.4%和97.6%, Fe、As浸出率分别为6.6%和14.0%, 同时Pb、Ag等有价金属在浸出渣中得到富集, 实现了有价金属的综合回收。  相似文献   

13.
含钒石煤氧压酸浸提钒新工艺研究   总被引:9,自引:2,他引:7  
介绍了含钒石煤氧压酸浸提钒新工艺的研究情况。考察了浸出时间、浸出温度、 浸出剂浓度、浸出液固比、矿石粒度、添加剂用量对浸出率的影响,研究表明在浸出时间3~4 h、浸出温度150 ℃、硫酸用量25%~30%、液固质量比1.2∶1、矿石粒度-200目、添加剂用量3%~5%的条件下,经两段氧压酸浸后,钒的浸出率可达90%以上。  相似文献   

14.
氧化铜钴精矿浸出试验研究   总被引:4,自引:3,他引:1  
以硫酸为浸出剂, 针对某含铜5.75%、含钴0.34%、以铜计氧化率为78.96%的氧化铜钴精矿进行了浸出工艺研究。结果表明, 在浸出温度50 ℃、酸矿比0.3∶1、液固比4∶1、浸出时间6 h条件下, 以渣计铜浸出率达到94.34%、钴浸出率达到97.57%, 浸出液中铜含量为12.38 g/L, 钴含量为0.73 g/L, 铁、锰、镁等杂质含量均较低。  相似文献   

15.
研究了甲酸作为还原剂在硫酸介质中还原浸出低品位氧化锰矿的工艺。采用单因素试验研究了甲酸用量、硫酸浓度、反应温度、反应时间及液固比对锰、铁、铝3种金属浸出率的影响。利用XRD和SEM对矿粉和矿渣的成分和表面形貌进行了分析和表征, 利用响应曲面法对还原浸出条件进行了优化。结果表明, 各因素影响浸出率的主次顺序为甲酸用量>硫酸浓度>反应温度>反应时间。当硫酸体积分数为15%, 液固比为6, 甲酸用量0.4 mL/g, 反应时间2 h, 反应温度90 ℃时, 锰浸出率最大, 为90.05%, 此时铁和铝浸出率为80.07%和31.55%。  相似文献   

16.
低品位硫化镍矿选矿中矿加压浸出试验研究   总被引:1,自引:0,他引:1  
进行了低品位硫化镍矿选矿中矿的加压浸出试验研究,重点考察了初始硫酸用量、氧气压力、浸出温度、浸出时间、搅拌速度和液固比对镍浸出率的影响;在最佳工艺条件下,浸出渣中镍含量平均为0.082%,镍浸出率平均为93.35%。  相似文献   

17.
某钴铜精矿硫酸化焙烧试验研究   总被引:1,自引:0,他引:1  
刘忠胜  邢飞  段英楠 《矿冶工程》2014,34(5):108-112
以吉林省某铜钴矿为原料, 经浮选得到混合精矿试料, 采用硫酸化焙烧-两段浸出工艺回收铜钴。重点探讨了焙烧助剂添加方式、用量、试料粒度对铜钴镍浸出率的影响。焙烧助剂采用6%硫酸钠, 以液体形式加入, 焙烧温度为610 ℃, 焙烧时间80 min, 一段室温水浸出, 浸出时间60 min, 二段10%硫酸浸出, 浸出温度80 ℃, 浸出时间60 min, 浸出固液比为1+4时, 钴浸出率86.42%, 铜浸出率98.26%, 镍浸出率60.01%。  相似文献   

18.
采用硫酸直接溶出含钒、镁废渣, 考察了硫酸用量、废渣粒度、溶出温度、液固比和溶出时间因素对渣中钒、镁溶出分离效果的影响。实验结果表明: 在硫酸用量配比0.9∶1、原矿-0.074 mm粒级占86.31%、溶出温度70 ℃、液固比3∶1、溶出时间30 min时, 钒回收率达到95.88%, 镁溶出率达到94.72%, 分离效果很好。  相似文献   

19.
有机硅废触体中铜的浸出行为及动力学研究   总被引:1,自引:0,他引:1  
陶均  葛英勇  方纪 《矿冶工程》2022,42(5):98-102
采用过氧化氢氧化-硫酸浸出工艺提取有机硅废触体中的铜,考察了硫酸浓度、固液比、浸出温度、浸出时间和过氧化氢用量等因素对铜浸出率的影响,并进行了浸出动力学研究。结果表明,在浸出温度40 ℃、浸出时间2 h、硫酸浓度1.5 mol/L、液固比4 mL/g、过氧化氢溶液体积与固体质量之比为0.2 mL/g的浸出条件下,铜平均浸出率为96.64%,浸出渣中平均含铜仅0.524%。有机硅中铜的浸出过程符合收缩未反应核模型,主要受化学反应控制,铜浸出过程的反应表观活化能为24.23 kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号