首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了实现小批量连续化制备碳化钒粉末,以工业级V2O5和纳米炭黑为原料,利用碳热还原法,在常压下碳管炉中得到了V8C7。通过X射线衍射仪(XRD)、扫描电镜(SEM),分析了合成过程。结果表明:在较低的温度下,纳米炭黑将V2O5还原为VO2;随着合成温度的升高,还原为更低价的V2O3,但没有VO生成;接着发生碳化反应,生成VC1-x、V8C7,合成的各阶段相互重叠;在合成过程中,试样的显微组织因物相不同而有所不同,生成的钒氧化物为炭黑附着的颗粒状大团聚体,VC1-x粉末颗粒呈类球形,但大小不均匀;随着温度升高,合成的最终产物V8C7粉末颗粒呈球形或类球形,大小均匀,粒度为1μm左右;还原碳化过程中,产生的气体有CO、CO2。  相似文献   

2.
使用偏钒酸铵和纳米炭黑为原料,先制备前驱体粉末,再将前驱体粉末在一定温度下热处理得到纳米V8C7粉末.采用X射线衍射仪(XRD)和扫描电镜(SEM)对不同温度下反应产物的相组成和微观结构进行了分析.结果表明:反应温度对纳米碳化钒制备过程中的相组成和微观结构具有重要影响;随着温度升高,将发生NH4VO3→V2O5→V2→V5O9+V407→V2O3→VC1-x→V8C7的相转变,反应产物的粒度呈增大→减小→增大的变化趋势,1100℃时粉末显示较好的分散性,并且主要由直径100nm左右的球形颗粒组成.  相似文献   

3.
以偏钒酸铵、氧化铬、纳米炭黑为原料,利用碳热还原法制备超细碳化钒铬粉末。采用X射线衍射仪、热重-差热分析仪和扫描电子显微镜对反应过程进行分析,结果表明:1 100℃时,氧化铬和氧化钒的碳化反应完成,得到碳化钒和碳化铬的混合粉末,粉末由平均粒径为0.6μm的类球形颗粒组成;1 200℃时,得到由V3Cr2C5和Cr2VC2组成的碳化钒铬固溶粉末,粉末颗粒均匀分散,形貌呈球形或类球形,平均粒径为0.8μm。  相似文献   

4.
本文分别采用固相反应法和溶胶凝胶法制备 Yb2Si2O7 前驱体粉末和陶瓷块材。 采用固相法时, 混合粉 末经 1500 ℃, 5 h 煅烧后由 Yb2Si2O7 和 Yb2SiO5 两相构成, 经冷压、 1600 ℃, 10 h 煅烧后得到疏松块材, 内部 残留大量未完全反应的氧化硅和中间相 Yb2SiO5。 采用溶胶凝胶法时, 退火态干凝胶经 1400 ℃, 5 h 煅烧后即可 获得高纯 Yb2Si2O7 粉末, 经冷压、 1600 ℃, 10 h 煅烧后, 得到近 Yb2Si2O7 纯相的、 更完整致密块材。 这些表明 相较于固相反应法, 溶胶凝胶法制备 Yb2Si2O7 具有反应门槛较低、 易制得高纯均匀材料的优势。 进一步, 采用 二流体雾化工艺制备低压等离子喷涂用粉末, 重点探索了 PVA 含量和雾化压力对粉末的影响规律。 结果表明, PVA 含量决定粉末形貌, 当 PVA 含量适中时 (10 wt.%) 可获得球形度良好的实心粉末, 雾化压力决定粉末粒度, 雾化压力越大, 粉末粒径越细, 当雾化压力为 1.2 MPa 时, 可获得所需的 1~30 μm 超细粉末。  相似文献   

5.
以高纯度的ZnO、In2O3和Ga2O3等氧化物粉末为原料,经过球磨充分混合并细化后,采用固相烧结反应法制备IGZO(indium gallium zinc oxide)粉末,利用X射线衍射(XRD)与扫描电镜(SEM)对该粉末的物相组成、颗粒表面形貌与粒径等进行观察与分析,研究烧结温度、保温时间及球料质量比对IGZO粉末形貌与结构的影响。结果表明:在保温时间为6 h的条件下,烧结温度为1 100℃时,Ga2O3和ZnO反应生成ZnGa2O4,所得粉末以ZnGa2O4相为主,仍有In2O3未发生反应;在1 200和1 300℃下烧结均可得到表面形貌不规则的In Ga ZnO4单相粉末,1 200℃下烧结的粉末粒径明显小于1 300℃烧结粉末的粒径。1 200℃下烧结4 h及以上即可保证固相反应完全,得到InGaZnO4单相粉末。随球料质量比增大,粉末颗粒细化。球料质量比为10:1和15:1条件下制备的IGZO粉末粒径相近,但明显比球料质量比为5:1条件下制备的粉末更细。  相似文献   

6.
以CoCl2·6H2O为原料,采用溶液雾化氧化法制备Co3O4粉末,对反应温度、溶液浓度、载气压力等工艺条件对产物粒子形貌及粒度分布的影响进行系统研究.结果表明,反应温度对Co3O4粉末的形貌和粒度都有影响,高温下粉末粒度较小,球形度较好,但温度过高会导致粒子团聚;COCl2·6H2O溶液的浓度对Co3O4粉末粒度也有影响,高浓度下所得Co3O4粉末的粒径较大;雾化压力增大,有利于得到颗粒分布均匀、分散性好的Co3O4粉末,但粉末粒度随之增大.在反应温度为850℃、CoCl2·6H2O溶液浓度为1.5 mol/L、雾化压力为1.5×10 5Pa的条件下,反应较完全,可制备物相单一的Co3O4粉末,产物为均匀分布的球形粉末,且粒度分布较窄.  相似文献   

7.
超细WC-Co复合粉的原位反应合成及烧结致密化   总被引:2,自引:0,他引:2  
以微米级蓝钨(WO2.9)、四氧化三钴(Co3O4)和炭黑(C)为原料,采用真空原位还原碳化反应制备超细WC-Co复合粉末,经过真空烧结得到WC-Co合金块体。利用扫描电镜、X射线衍射仪观察和分析复合粉末及合金显微形貌及物相组成,研究原料粉末中配碳量对WC-Co复合粉及合金物相与力学性能的影响。结果表明:所得平均粒径为300 nm的超细WC-Co复合粉末的主相均为WC和Co相,含有少量的η相(Co3W3C);原料粉末中配碳量(质量分数)为16.69%较为合适,此时可获得物相纯净、平均晶粒尺寸470 nm的超细晶WC-Co硬质合金,合金的横向断裂强度为2 464 MPa;原料粉末中配碳量为16.85%时,合金中存在少量的游离碳,横向断裂强度只有1 946 MPa。  相似文献   

8.
前驱体碳热还原法制备纳米V(C1-xNX)粉体   总被引:1,自引:0,他引:1  
以偏钒酸铵粉末和纳米碳黑为原料,先制成含有钒源和碳源的前驱体粉末,再置入真空碳管炉中,通入氮气进行碳氮化合成V(C1-xNx)粉体,采用TG/DSC热分析、XRD、SEM和TEM等测试方法对不同合成温度下的反应产物进行了表征,结果表明:前驱体粉末可以获得混合充分均匀的反应物原料,并在1 050~1 100℃之间制备了相组成单一、平均粒径60nm的纳米级V(C1-xNx)粉体;当温度低于1 050℃,粉体粒度小于100nm,但反应产物中有V2O3杂相生成;当温度高于1 100℃时,随着温度的升高,粉体的粒度逐渐长大,在1 200℃时颗粒之间熔融桥联.在1 000~1 100℃温度范围内,温度对粉体的x值影响不大,当温度高于1 100℃时,x值明显减小,说明V(C1-xNx)粉体中的碳含量显著增多,氮含量明显减少.  相似文献   

9.
首先探究了以Nb2O5、Co和炭黑的原位反应制备纳米NbC-Co复合粉末的最佳工艺,然后以此复合粉作为添加剂,研究了其对低压烧结制备WC-Co硬质合金组织和性能的影响。热力学计算和原位反应实验结果表明,原料粉末中未添加Co时存在明显的Nb2O5→NbO2→NbC两段反应过程,而添加Co不仅显著降低了反应发生温度,还使Nb2O5的还原、碳化两步反应几乎同时进行。通过优化原料粉末的配碳量、反应温度,制备的NbC-Co复合粉物相纯净,具有较低的氧含量,平均粒径为82 nm。添加纳米NbC-Co使制备的WC-Co硬质合金的晶粒尺寸由0.7μm降低至0.48μm,组织更为均匀,室温和高温硬度均明显提高。即使温度达到800℃,制备的WC-12Co-1NbC硬质合金的硬度仍维持在890HV30。  相似文献   

10.
以LaCl_3·6H_2O和H_2C_2O_4·2H_2O为原料,用室温固相化学反应首先合成出前驱物草酸镧,经750℃分解3h,得到产物纳米氧化镧。用X-射线粉末衍射和透射电镜对产物的组成、大小、形貌进行表征。结果表明:纳米氧化镧为粒度分布均匀的长方体形结构,平均粒径12nm。并考察了表面活性剂对粒径大小和分散性的影响。  相似文献   

11.
 The deoxidation kinetics of hematite ore with various particle sizes with hydrogen at low temperature and reduction mechanisms were studied using the thermogravimetric analysis. Under the same temperature, after particle size of powder becomes thinner from 107.5μm to 2μm, the surface area of powder and the contact area between powder and gas increase, which makes the deoxidation process of hematite accelerate about 8 times, and the apparent activation energy of deoxidation reaction drops to 36.9 kJ/mol from 78.3 kJ/mol because of activity of ore powder improved with refining gradually. Under the same reaction rate, the reaction temperature of 6.5μm powder decreases about 80℃ than that of 107.5μm powder. Thinner diffusion layer also helps accelerate the reaction with powder refining. The higher the temperature, the greater peak of deoxidation rate is; under the same temperature, the greater the particle size, the smaller the peak of deoxidation rate is; both inner diffuse and interface chemical reaction play an important role in the whole reaction process.  相似文献   

12.
以纳米Cr_2O_3和乙炔黑为原料,经高温还原碳化制备超细Cr_3C_2粉末,研究反应温度、反应时间以及配碳量对Cr_3C_2粉末的粒度与游离碳含量的影响。通过热力学计算,只有当温度高于1 350 K时还原碳化反应才有可能进行,采用纳米Cr_2O_3可显著降低反应温度,在1 573 K下焙烧6 h碳化率即达到98.20%;Cr_3C_2粉末的游离碳含量随配碳量增加而显著提高,配碳量(质量分数)为理论配碳量的1.05倍时制得游离碳含量为0.23%、氧含量为0.91%(均为质量分数)、平均粒度为1μm的Cr_3C_2粉末,该粉末达到硬质合金及热喷涂应用的要求。  相似文献   

13.
The reduction kinetics and mechanisms of hematite ore with various particle sizes with hydrogen at low temperature were studied using the thermogravimetric analysis. At the same temperature, after the particle size of powder decreases from 107.5 μm to 2. 0 μm, the surface area of the powder and the contact area between the powder and gas increase, which makes the reduction process of hematite accelerate by about 8 times, and the apparent activation energy of the reduction reaction drops to 36.9 kJ/mol from 78.3 kJ/mol because the activity of ore powder is improved by refining gradually. With the same reaction rate, the reaction temperature of 6. 5 μm powder decreases by about 80 ℃ compared with that of 107.5 μm powder. Thinner diffusion layer can also accelerate the reaction owing to powder refining. The higher the temperature, the greater is the peak of the reduction rates at the same temperature, the greater the particle size, the smaller is the peak value of the reduction rates both inner diffusion and inter-face chemical reaction play an important role in the whole reaction process.  相似文献   

14.
 研究了机械力对碳粉物理化学性能的影响规律。发现在球磨过程中,碳粉的颗粒度及晶粒不断细化、比表面积不断增大,当颗粒度小于40 μm时,碳粉的晶粒大部分为100 nm左右的纳米晶粒。当作用时间较长时,碳粉会发生无定形化。在机械力的作用下,晶粒会产生畸变和位错,从而形成活化中心,降低反应活化能;同时由于碳粉比表面积的增大,增加了反应物与碳粉的接触面积,从而有利于加快气化反应的进行。与传统粉体(小于150 μm)相比,细化后碳粉(小于40 μm)的气化温度下降200 ℃左右。  相似文献   

15.
直接碳化法制备碳化钒的热力学分析   总被引:1,自引:0,他引:1  
对以五氧化二钒为原料制备碳化钒的工艺过程进行热力学分析,分析结果表明:钒氧化物在转化过程中遵循逐级还原理论;钒氧化物在碳化过程中,不转化为金属钒,直接转化为碳化钒;二氧化钒的碳化温度最低,为1018K,因此,在钒氧化物的转化过程中,应尽可能使其转化为二氧化钒。若采用气相还原碳化的方法,则可通过调节气体的流量、配比对还原碳化工艺进行控制。  相似文献   

16.
卢百平  韦雯  刘灿成  徐辉 《粉末冶金技术》2012,30(2):130-134,139
采用高能球磨法制备超细Al2O3粉末,研究了球磨时间、球磨转速及工艺控制剂等工艺参数对Al2O3粉末粒度和形貌的影响。结果表明:在一定范围内,延长球磨时间,提高球磨转速均能有效地减小颗粒尺寸;在球磨过程中加入工艺控制剂,能有效地防止粉末粘附在磨球和磨罐上,并改善粉末颗粒的均匀性。在本文试验条件下,加入工艺控制剂乙醇,球磨转速为400r/min,球磨时间为30h等条件下,获得Al2O3粉末的D50为0.82μm,Al2O3粉末粒径分布在0.12~6.37μm范围内。  相似文献   

17.
以酸碱含铜刻蚀废液为原料,聚乙烯醇(PVA)为分散剂,并采用添加可溶性铝盐络合共沉淀的方法制备了含铝铜的前驱体粉末,最终采用高温煅烧-氢气还原工艺制备了纳米Al_2O_3弥散强化铜粉末。采用激光粒度仪、SEM-EDS、XRD等研究了络合共沉淀过程中工艺参数对弥散铜粉末及Al_2O_3弥散相粒度的影响。结果表明:通过控制络合共沉淀过程中的反应条件,可制备出粒度小于1.5μm且分布较窄的纳米Al_2O_3弥散强化铜粉末,最佳工艺参数为:母液浓度1.0 mol/L,沉淀氨水浓度20%(体积分数),反应温度70℃,p H值为7;调节分散剂的含量可控制弥散相的粒度及分布,PVA与铜离子的物质的量比为0.4∶1.0时,制备出的纳米Al_2O_3弥散相粒度小于100 nm,粒子间距100~200 nm;粉末经氢气烧结950℃保温60 min,烧结试样的密度为8.45 g/cm~3,硬度为115 HB。  相似文献   

18.
围绕开发连续、高效、低成本的一步法合成碳氮化钒的技术,在总结氮化钒生产工艺过程研究的基础上,以V2O5为原料,焦炭为还原剂,经过破碎、混料和压制成块、烘干后进行还原氮化过程,在高纯氮气气氛下探索了高温碳热还原一步法制备碳氮化钒的最佳生产工艺条件。通过对V2O5的还原过程进行热力学分析计算并利用FactSage热力学软件对其进行理论研究,采用XRD、SEM等测试方法对反应温度、反应时间、氮气流量、制样压力等影响因素进行单因素试验分析,结果表明,碳化钒的氮化反应是逐级进行的,碳氮化钒的反应过程为V2O5→V2O4→V2O3→VC→VCN。试验中产生的CO会改变炉内气体分压,会对碳化温度和氮化温度产生影响,因此反应过程中应严格控制体系的CO和N2分压;反应时间和氮气流量对反应产物的钒、氮、碳含量产生不同的影响,钒含量和氮含量随着反应时间的增加和氮气流量的...  相似文献   

19.
以钨酸钠和盐酸为原料,碳纳米管为载体,采用一步法将钨酸颗粒直接沉积在碳纳米管管壁上,形成钨酸-碳纳米管(H2WO4-CNTs)复合物.或采用二步法将钨酸沉淀与碳纳米管复合,形成H2WO4-CNTs复合物.之后,在氧气气氛下进行煅烧,生成了氧化钨粉末.经物理性能测试,2种方法制备的H2WO4-CNTs复合物中钨酸颗粒的平均粒径分别为10 nm和100 nm.氧化钨粉末的平均粒径分别为250 nm和2μm,比表面积分别为36.53 m2/g和13.99 m2/g.采用紫外可见分光光度计测定了氧化钨的光催化性能,在11 W的日光灯照射下,当光照时间为30 min时,脱色率分别达到93.8%和79.1%.结果表明,一步法制备的氧化钨因具有更小的平均粒径和更大的比表面积,表现出更好的物理吸附性能和光催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号