首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍转炉少渣冶炼、炉渣热循环利用实践.可分两个阶段,脱碳出钢留渣、冶炼中期脱磷倒渣留渣与脱碳出钢留渣同时进行(留渣+双渣).脱碳留渣冶炼,通过出钢后倒渣、调渣过程控制,抑制留渣造成吹炼前期的喷溅.留渣冶炼使吨钢石灰消耗降低28.6%.“留渣+双渣”试验,控制转炉前期炉渣碱度及全铁,选择合适脱磷渣倒炉点及温度,保证前期渣脱磷率和泡沫化,最终前期脱磷率大于60%,排渣率大于50%.“留渣+双渣”技术,吨钢石灰消耗降低46.9%.  相似文献   

2.
为优化转炉冶炼工艺,进行了180 t顶底复吹转炉的少渣低温高效冶炼试验,实现前期渣碱度平均为1.91,前期脱磷率平均为56.25%,后期渣碱度平均为3.02,终点脱磷率平均大于90%,过程石灰、白云石消耗分别降低30%、20%以上。得出冶炼前期碱度为1.5~2.0,熔池温度为1350~1400℃更有利于铁水磷的脱除;随终点出钢温度与终渣碱度的提高,终点出钢磷质量分数增加;分析前期的快速化渣有利于铁水磷更多地脱除到前期渣中;冶炼后期的少渣操作容易造成“返干”,是影响后期冶炼效果的关键因素。  相似文献   

3.
《特殊钢》2017,(1)
4.28%~5.02%C,0.19%~0.24%V铁水经提钒后的半钢成分为3.30%~3.80%C,≤0.037%V。"留渣+双渣"法为留上一炉渣,兑入提钒半钢和50~70 kg/t废钢加入石灰和白云石进行吹炼5~6 min,倒渣,并加入适量石灰和白云石继续吹炼至终点。结果表明,吹炼前期随着炉渣碱度或温度的增加,钢水脱磷率先增加后降低,而随着渣中(FeO)增加脱磷率先增加后稳定,前期最佳控制条件为炉渣碱度3.0~3.5,(FeO)10.0%~15.0%,倒渣温度1 480~1 510℃;转炉吹炼后期,随着炉渣碱度的增加脱磷率升高,而随着温度的增加脱磷率降低,(FeO)对脱磷率的影响与前期较为相近,转炉吹炼终点控制碱度3.5~4.0,(FeO)8.0%~10.0%,温度≤1630℃为宜,脱磷率在90.0%以上;此工艺可将钢水终点[P]控制在0.015%以内,满足低磷钢冶炼的需求。  相似文献   

4.
为优化转炉冶炼工艺,对180 t顶底复吹转炉进行少渣低温高效冶炼试验,采用少渣冶炼工艺,即:兑铁→脱磷期冶炼→前期倒渣→脱碳期冶炼→终点出钢,实现了前期渣碱度平均1.91,前期脱磷率平均56.25%,后期渣碱度平均3.02,终点脱磷率平均90%,过程石灰、白云石消耗分别降低30%、20%以上。冶炼前期碱度1.5~2.0,熔池温度1 350~1 400℃更有利于铁水中磷的脱除;随着出钢温度和终渣碱度的提高,钢中磷含量增加。  相似文献   

5.
针对钢厂铁水硅和磷含量较高的特点,采用转炉留渣双渣冶炼工艺以获得稳定的铁水脱磷率。吹炼3 min后加入石灰和污泥球等造渣材料,供氧强度0~3 min时为2.5m3/(t·min),3~4.5 min时为3.2m3/(t·min),温度控制在约1320℃。转炉一次倒渣后,继续吹炼,加入后期造渣料,待一氧化碳体积分数稳定时,适当提高氧枪枪位,促进化渣,并进行终点碳控制。试验结果表明:脱磷期铁水平均脱磷率为58.09%,脱碳期钢水平均脱磷率为85.56%;当半钢温度为1320℃炉渣碱度为2.0,炉渣TFe含量为18%时,在脱磷期能获得较好的铁水脱磷效果;当转炉钢水一倒温度为1580℃,终渣碱度为3.5,炉渣TFe含量为20%时,在脱碳期能够获得较好的脱磷效果;转炉终点[P]e/[P]r为0.90;试验中得到脱磷期和脱碳期炉渣的岩相组成适合铁水脱磷。  相似文献   

6.
目前在溅渣护炉过程中进行气化脱磷是一种有效的炉渣除磷技术。为保证转炉熔渣气化脱磷后循环利用的冶炼效果,在实验室进行了气化脱磷渣作为返料用于造渣脱磷的试验研究。研究结果表明,气化脱磷渣用于铁水脱磷时前期脱磷能力强,终点脱磷率低,其终点铁水脱磷率和脱磷速率分别为53.3%和0.16%/min;对比配制脱磷剂炉次可知,配制脱磷剂前期脱磷效果差,终点脱磷率高,其终点铁水脱磷率和脱磷速率分别为91.6%和0.32%/min。根据两者脱磷剂的脱磷优势采用混合配比铁水脱磷,当气化脱磷渣大比例用于铁水脱磷时出现回磷现象;当混合比例为1∶4时脱磷效果最好,终点脱磷率为64.4%。采用生命周期评价法对混合渣料比例为1∶4铁水脱磷进行CO2减排评估,从系统边界的起点到终点预估吨钢可减排CO26.034~10.34 kg,吨钢可节省石灰成本1.8~3.0元。  相似文献   

7.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

8.
为解决帘线钢因磷偏析而造成的拧股断裂,根据现有的设备及生产组织情况,在中天120 t转炉上进行双渣工艺试验,通过对加料制度、顶枪操作、底吹等工艺制度进行研究,分析前期倒渣温度、碱度、FeO等对脱磷影响。结果表明,前期倒渣温度控制在1 320~1 400 ℃、炉渣碱度控制在1.8~2.0的工艺控制下,转炉终点脱磷率达到92.8%,平均出钢磷质量分数由0.011%降低至0.008 5%,平均终点碳质量分数由0.13%提高至0.205%。  相似文献   

9.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

10.
采用热力学计算和工艺试验的方法,对转炉双渣法冶炼DC04钢的脱磷工艺进行了研究,结果表明:运用转炉双渣法脱磷前期的最佳温度为1 320~1 355℃,前期碱度应控制为1.4~1.8,倒前期渣的时机应控制在吹炼后3~4min比较适宜;双渣法冶炼使钢液中锰的收得率降低,在30%以下;双渣法脱磷前渣中TFe较低,但是后期中渣中TFe的含量变化较小;双渣法冶炼过程控制平稳,能有效降低出钢终点磷含量。  相似文献   

11.
通过对转炉脱磷和碳-磷选择性氧化转变温度的理论分析和计算,在铁水未经脱磷预处理的条件下,进行120 t顶底复吹转炉双渣脱磷生产实践。当铁水平均成分为(/%):4.81C、0.49Si、0.32Mn、0.127P、0.019S的情况下,在转炉冶炼前期(0~360 s),采用低温(1 330~1 350℃),较强底吹搅拌[0.030~0.040 m~3/(t·min)],中等炉渣碱度(2.0~3.0)和高氧化铁(20%~25%)工艺措施,实现一次倒渣的半钢(3.8%C)平均磷含量0.048%和平均脱磷率62.2%的脱磷效果。  相似文献   

12.
《炼钢》2015,(3)
通过对转炉冶炼过程的平衡计算及脱磷规律的研究,优化了转炉双渣工艺。实践表明:在满足钢种要求的出钢钢水成分前提下,将铁水比由84%提高到88%,转炉终点出钢温度可稳定控制在1 680℃以上;前期炉渣w(MgO)控制在6%~8%,碱度控制在1.6~1.8,终点炉渣碱度控制在3.5~4.0,转炉终点磷质量分数基本可控制在0.02%以下,达到了生产冷轧基板对转炉出钢要求温度高、磷含量低的工艺指标。  相似文献   

13.
为实现低磷钢批量生产,通过控制冶炼过程工艺参数并采取双渣法脱磷,使倒渣温度控制在1 350~1 400℃;冶炼时间控制在350 s;炉渣碱度控制在1.7~2.0,使前期脱磷率控制在70%以上。转炉终点平均出钢P含量由0.012%降低至0.009%,出钢温度由1 642℃提升至1 649℃,取得了良好的脱磷效果。  相似文献   

14.
 京唐公司炼钢系统铁水转炉预脱磷及“全三脱”铁水少渣冶炼工艺不断进行技术优化,脱磷转炉通过优化废钢尺寸、底吹枪数量和排布,半钢脱磷率可达到70%;铁水经过脱磷转炉脱硅、脱磷后,温度和磷质量分数更加稳定,为脱碳转炉少渣冶炼、自动化炼钢终点双命中率的提高提供了先决条件;脱碳转炉通过采用留渣操作、少渣冶炼技术、溅渣护炉技术后,自动化命中率达到90%以上,炉龄达到7 000炉以上;炼钢车间内渣钢、除尘灰、氧化铁皮等含铁物料实现了自循环消耗。采用“全三脱”铁水冶炼工艺,钢种质量进一步提高,超低磷与超低硫钢中(S+P+N)元素质量分数可稳定控制在0.009 5%以下。  相似文献   

15.
张润灏  杨健  叶格凡  孙晗  杨文魁 《炼钢》2022,38(1):1-13
转炉脱磷工艺利用了转炉容积大的特点,可以实现转炉前期快速高效低碱度脱磷.脱碳渣的循环利用降低了石灰等辅料消耗和渣量.在低温低碱度转炉脱磷的条件下,低温在热力学上有利于脱磷,但温度过低会使渣过于粘稠而影响动力学条件并使倒渣困难;适当提高碱度,脱磷效果较好.随着渣中氧化铁含量的上升,脱磷效果先上升后下降.转炉脱磷渣中固液两...  相似文献   

16.
《特殊钢》2017,(6)
根据脱磷氧化反应热力学研究了C-P-Fe耦合作用下的半钢脱磷平衡温度以及P-Fe作用下的转炉冶炼终点钢水脱磷平衡温度,提出了双渣法冶炼"脱磷窗口"的温度控制模型。并进行了46炉45t顶底复吹转炉双渣法脱磷试验,得出转炉一次倒炉钢液温度和终点温度对脱磷率和磷分配比的影响。通过理论计算和工艺试验分析得出,一次倒炉钢液温度控制在1400~1440℃,冶炼终点温度控制在1610~1650时,在目前铁水/%:4.41C,0.41Si,0.19Mn,0.128P,0.034S,1250~1300℃,终点钢水/%:0.08C,0.01Si,0.06Mn,0.009 0P,0.017S,1600~1660℃和相关工艺条件下,可使一次倒炉钢液脱磷率达到62.1%,终点脱磷率达到93.9%,终点磷含量由原0.0090%降低至0.0078%。  相似文献   

17.
 为了在“全三脱”工艺流程中实现炉渣的高效循环利用,将[w((P2O5))]较低的热态脱碳炉终渣通过渣罐兑入脱磷炉继续发挥脱磷作用。分析结果表明,提高返回渣量及脱磷渣磷分配比均可显著降低脱磷炉石灰消耗量,当渣钢磷分配比及返回渣量控制合适时,脱磷炉可不加入石灰而使半钢磷质量分数达到目标值。对脱碳炉渣在脱磷炉冶炼中的再熔化过程进行计算分析,随着铁水中硅元素的氧化,脱碳渣碱度降低而不断熔化,逐渐发挥脱磷作用。在“全三脱”工艺流程中成功开发了转炉渣热态循环利用工艺,脱磷率提高约6%,返回脱碳渣加入量约为67.13 kg/t,石灰、轻烧白云石和萤石分别节约9.37、1.15 和2.45 kg/t,半钢温度提高约7 ℃。  相似文献   

18.
赵喜伟  闫忠 《宽厚板》2014,(4):20-23
舞钢在没有铁水预脱磷设备的条件下,为了提高转炉钢冶炼前期的脱磷效率,结合转炉不同吹炼时期特点,通过生产实践,探索高磷铁水顶底复吹转炉双渣法冶炼工艺生产低磷钢的方法,确定了吹炼过程中合理的氧枪枪位和原料投放时机,总结出一倒时间、碱度、温度等关键操作制度,最终开发出直接利用高磷铁水生产低磷钢的转炉双渣法冶炼工艺技术,满足了低磷钢种对钢水洁净度的要求,达到了降本增效的目的。  相似文献   

19.
针对100t转炉用含钛铁水冶炼高碳钢的前期成渣难于熔化、脱磷率低的问题,分析了含钛铁水转炉炼钢的成渣过程和炉渣的物理特性,开发了留渣+单渣工艺技术。循环利用终点炉渣,充分发挥渣中10%~13%FeO高(FeO)含量的特点,快速把含钛铁水冶炼前期的CaO-TiO2-SiO2三元渣系转变为CaO-TiO2-SiO2-FeO四元渣系,脱除钢中大部分磷。控制终渣碱度大于3.2、(TiO2)含量小于5%,使转炉出钢[C]≥0.20%、[P]≤0.014%,转炉炼钢脱磷率达到88%~92%,石灰消耗下降到28 kg/t钢。  相似文献   

20.
唐钢公司二钢轧厂利用55 t顶底复吹转炉研究了双渣操作对脱磷效果的影响。试验结果表明,采用双渣法可以将脱磷率由单渣法的87.8%提高到92.6%,终点钢水磷含量低至0.008 1%;采用双渣法留渣冶炼有利于提高前期炉渣中FeO含量和碱度,从而有利于脱磷,可将脱磷率提高到95.2%,终点钢水磷含量降低至0.005 5%。脱磷率随着吹氧时间和供氧量的增加而升高,增加总吹氧时间或者总供氧量有利于改善化渣效果。另外,增加总吹氧时间或者总供氧量也延长了脱磷时间,最终提高了脱磷效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号