首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
吴巍  吴伟 《河南冶金》2007,15(5):3-4,15
分析了转炉冶炼轴承钢的优势,对转炉轴承钢氧含量、钛含量偏高和精炼工艺存在的问题进行了讨论,认为精确控制转炉吹炼终点,实现高碳低氧出钢、控制出钢下渣量成为转炉冶炼轴承钢的重要环节;在精炼方面,应加强钢包顶渣脱氧、保证一定的钢水[ALs]含量和提高氩气搅拌效果.  相似文献   

2.
介绍了在精炼过程生产高碳铬轴承钢(GCrl5)时质量控制要点,通过在生产实践中不断优化造渣工艺,同时进行不同时期造渣对钢质量的影响试验研究、精炼合成渣的研究及精炼工艺的优化,得出终点w([C])大于0.20%、精炼渣碱度3.0~3.5、严格控制钢水成分、合理的过程温度控制、分段吹氩及合理时间控制、w([Al])控制在0.020%左右等措施可获得较低的全氧含量及较好的夹杂物控制水平。  相似文献   

3.
100t转炉-LF(VD)工艺冶炼轴承钢的氧含量控制   总被引:1,自引:1,他引:0  
通过铁水预脱硫-100 t顶底复吹转炉-吹Ar-LF(VD)-方坯连铸工艺生产轴承钢的实践,得出冶炼终点钢水碳含量为0.2%~0.6%时,钢水氧含量在50×10-6到150×10-6之间;经出钢时脱氧、吹氩、LF(VD)精炼后,中间包钢水中的全氧含量为(14~16)×10-6,铸坯中的全氧量<12×10-6。分析表明,加强熔池搅拌,使钢渣充分反应,控制转炉下渣量<5 kg/t钢,加强吹氩搅拌,控制LF顶渣碱度在2.0~2.5之间,(FeO)+(MnO)小于0.5%,可使轴承钢中全氧量进一步降低。  相似文献   

4.
针对杭州钢铁集团转炉炼钢厂生产的铸坯洁净度水平较差、表面横裂纹以及纵裂纹等问题,以40Cr为试验钢种,采取了提高钢水出钢终点碳含量、优化脱氧制度和精炼渣系、选用合适的合金及辅料、合理控制钙含量等改进措施。研究结果表明:加大出钢铝脱氧剂用量,选用低氮的合金原料,LF精炼渣系成分控制在W(CaO)=50%~55%,w(A1:03):22%~26%,w(Si02)=10%~12%,w(MgO)=5%~8%;钙处理10min后大包钢液w(Ca)/w(A1)=0.06~0.18、w(Ca)/w(S)=0.14~0.36;铸坯w(T.0)〈20x10-6,w(N)〈60×10-6;钢水可浇性良好。  相似文献   

5.
采用60tBOF→60tLF→200mm×200mm方坯CC工艺生产Cf53钢,冶炼与连铸工艺要点包括:控制转炉终点成分、温度和下渣量;控制LF炉渣碱度R在4.0~5.5之间,渣中w(Al2O3)15%~20%、w(MnO+FeO)〈1.5%;优化喂线工艺,保证白渣保持时间不小于15min;采用全保护浇铸和M+F电磁搅拌等。检验结果表明,采用该工艺生产的Cf53钢中,w(O)平均为6.6×10-6,w(N)平均为73.55×10-6,铸坯缩孔和中心疏松均在1.0级以下,明显改善了铸坯的宏观组织形貌。  相似文献   

6.
石钢采用60t转炉-60tLF-连铸工艺生产GCr15轴承钢,工艺实践表明:采用高拉碳操作法,转炉平均终点碳含量为0.2%、LF精炼时造高碱度渣、VD控制合理的真空时间和氩气流量、连铸时采用全程保护,能够满足轴承钢的质量要求。  相似文献   

7.
武钢条材总厂采用转炉—LF精炼—RH—连铸—连轧工艺流程生产60Si2Mn A弹簧钢,通过控制铁水中w(S)及w(Ti)、控制转炉终点w(C)、出钢过程无铝脱氧、LF全程吹氩搅拌、RH"软吹氩"、控制中间包钢水过热度15~30℃、全程保护浇注、低温轧制等措施,使得钢材夹杂物级别不大于1.5,布氏硬度值小于315,完全满足用户的技术要求。  相似文献   

8.
通过80t转炉-90tLF~100tRH—OC工艺生产弹簧钢60Si2GrVAT的实践,得出控制转炉出钢温度和终点碳质量分数,尽可能降低转炉终点氧质量分数;LF、RH精炼过程中,严格控制钢液中的全铝质量分数,从而控制钢液中氧质量分数;控制精炼渣碱度R〉4.0、w(FeO+MnO)在0.5%~1%以下,从而进一步降低氧质量分数。淮钢采用合理的生产工艺,把钢坯全氧质量分数控制在10×10^-6以下。  相似文献   

9.
首钢迁钢公司和首秦公司大规模采用了“留渣+双渣”转炉炼钢新工艺,大幅度减少了炼钢渣量和石灰、白 云石消耗。文章介绍了其中所开发的3项重要技术:①脱磷阶段采用低碱度( w(CaO)/ w(SiO 2 )∶1.3~1.5)和低 MgO质量分数(≤7.5%)渣系,形成流动性良好和适度泡沫化炉渣,解决了脱磷阶段结束难以快速足量倒渣和渣 中金属铁质量分数高这两大问题;②针对脱磷阶段底吹搅拌弱问题,采用了低枪位和高供氧强度吹炼方法,利用顶 吹氧气流加强金属熔池搅拌,获得了良好脱磷效果;③通过加快生产速度,特别是对“炼钢-精炼-连铸”生产合理 组织调配,在转炉冶炼时间增加大约4 min情况下,钢产量并没有减少。  相似文献   

10.
《炼钢》2014,(3)
国内某钢铁企业使用100 t电炉冶炼轴承钢,很难将铸坯全氧质量分数控制在10×10-6以下,通过系统研究提出以下改进措施:终点碳质量分数控制在0.10%以上;将铝脱氧剂的加入和造渣提前至LF精炼前;精炼渣碱度控制在5~8,w(CaO)/w(Al2O3)的值控制在1.5~1.7,MgO质量分数控制在5%~8%;适当减小电磁搅拌强度,防止保护渣卷入。工艺试验结果表明,通过以上措施可将轴承钢铸坯全氧质量分数控制在10×10-6以下。  相似文献   

11.
在实验室条件下采用钼丝挂渣法对氮微合金化HRB400钢筋氩站顶渣的发泡指数进行了测定。研究表明:当碱度在0.6~1.2之间,ω(MgO)为7%~20%时,碱度升高或ω(MgO)增加,能够有效抑制炉渣的起泡;高含量的CaF2(﹥6%)有利于抑制炉渣的起泡;Al2O3对炉渣的发泡指数影响并不明显。具有较弱的起泡性能的顶渣成分范围是:ω(CaO)/ω(SiO2)为0.8~1.2,ω(MgO)=10%~20%,ω(Al2O3)=9.45%,ω(CaF2)=2%,ω(FeO)2.02%。向顶渣中加入适量的CaO和MgO,可有效抑制顶渣的起泡。  相似文献   

12.
介绍了路用钢渣集料洁净技术,利用洁净工艺前后的钢渣集料分别配制了钢渣沥青玛碲脂碎石混合料(SMA),得到用水清洗后钢渣最佳配合比为:1号(钢渣10~16mm)∶2号(钢渣5~10mm)∶3号(玄武岩3~5mm)∶4号(玄武岩3mm)∶5号(石灰岩矿粉)=38∶36∶8∶8∶10,最佳油石比为6.4;没有用水清洗钢渣最佳配合比为:1号∶2号∶3号∶4号∶5号=34∶38∶10∶8∶10,最佳油石比为6.4。研究了钢渣洁净技术对钢渣SMA性能影响,发现洁净技术有利于发挥钢渣SMA性能。  相似文献   

13.
根据热力学计算,渣系的碱度0.5~1.2,w(Al2O3)10%~25%时夹杂物控制在塑性区域。实验室实验表明,夹杂物中w(CaO+MgO)/w(SiO2)比值和w(Al2O3)随钢中w(Als)增加而增加,钢中w(Als)应低于6×10-6;当精炼渣碱度为0.8~1.0,w(Al2O3)为0%~10%时,在实验室能实现对钢中夹杂物的塑性化控制。  相似文献   

14.
低碳低硅铝镇静钢的夹杂物控制工艺计算与分析   总被引:2,自引:0,他引:2  
刘海强 《河南冶金》2010,18(3):24-26
围绕低碳低硅铝镇静钢的可浇性问题,以大量的生产数据及现场实际生产状况为计算依据,对出钢终点[O]、夹杂物数量、精炼终渣渣量等进行了工艺计算分析。分析认为:在保证转炉出钢[C]小于0.05%的同时终点[O]控制在600×10-6~900×10-6较好,与之对应的精炼终渣渣量控制15 kg/t钢~18 kg/t钢为宜,渣中铝脱氧产物约合3.25 kg/t钢~3.88 kg/t钢;此时可将低碳低硅铝镇静钢的精炼终渣渣系控制在较佳的范围,渣中w(Al2O3)在18%~25%,碱度R(CaO/SiO2)在4.5~5.5,对脱除钢中夹杂物、控制钢水回硅、保证钢水可浇性意义重大。  相似文献   

15.
 依据实验数据计算结果,对钢液增氧的因素及其采取的相应措施进行了分析与探讨。研究结果表明:在氧化性顶渣条件下,钢液中w([Als])的变化率≥20%,而在还原性顶渣条件下,钢液中w([Als])的变化率≤10%;氧化性顶渣对钢液供氧的贡献率大于钢包与中间包衔接的水口处吸气对钢液供氧的贡献率;减少转炉下渣量及对顶渣进行改质可减轻炉渣向钢液供氧程度;大罐下渣量不会使中间包成为新的增氧源。  相似文献   

16.
为了控制帘线钢中的钛夹杂,要同时降低钢水中的w(Ti)及w(N)。通过采用低钛合金、优化转炉出钢工艺、控制转炉下渣量等措施控制钢水中的w(Ti);采用低氮增碳剂,优化全工序降氮操作等措施降低钢水中的w(N)。实践表明:当钢中w(Ti)控制在不大于0.000 4%,w(N)控制在不大于0.004%时,能显著降低甚至杜绝钛夹杂的析出。  相似文献   

17.
摘要:以实际工艺流程50t EBT-VOD-LF-VC冶炼15-5PH不锈钢为背景,通过FactSage 8.0和经典Wagner模型研究冶炼硅铝复合脱氧过程中钢液中的铝含量、炉渣组成以及冶炼温度等因素对钢液中氧含量的影响进行了热力学研究。结果表明:Al-Si复合脱氧为15-5PH不锈钢冶炼过程中的最佳脱氧工艺,为了保证脱氧的冶炼效果,应控制钢液中的酸溶铝的质量分数在0.015%左右;降低冶炼温度有利于降低钢液平衡氧含量;考虑炉渣的物理性能和钢渣界面平衡反应得出脱氧工艺的最优炉渣成分,碱度为2.5~3.0,w((Cr2O3))=0.5%,w((Al2O3))=20%,w((MgO))=5%,w((CaF2))=5%;经过工艺优化后生产的15.5PH不锈钢中氧含量明显降低,均满足产品要求,炉渣碱度对平衡氧含量和实际生产全氧含量的影响规律基本相同。  相似文献   

18.
陈亮 《特殊钢》2011,32(5):41-43
由于方圆连铸机浇铸X52管线钢(%:0.14~0.18C、0.30~0.50Si、1.25~1.40Mn、≤0.025P、≤0.025S、0.03~0.06Nb)易发生水口堵塞和难控制铸坯质量,故采用转炉出钢时根据钢中的碳含量加入200~500kg/炉Fe-Al脱氧剂进行脱氧,在LF用高碱度渣(%:≥70CaO、≤5Al2O3、≤5SiO2、≥5CaF2、≤5MgO、≤0.05N)进行精炼,精炼结束软吹氩≥5 min等技术措施生产X52管线钢。结果表明,LF平均脱硫率37%,钢中S≤0.011%、P≤0.015%,Φ200 mm连铸圆坯表面质量良好,低倍各项评级均小于1.0级。  相似文献   

19.
介绍转炉少渣冶炼、炉渣热循环利用实践.可分两个阶段,脱碳出钢留渣、冶炼中期脱磷倒渣留渣与脱碳出钢留渣同时进行(留渣+双渣).脱碳留渣冶炼,通过出钢后倒渣、调渣过程控制,抑制留渣造成吹炼前期的喷溅.留渣冶炼使吨钢石灰消耗降低28.6%.“留渣+双渣”试验,控制转炉前期炉渣碱度及全铁,选择合适脱磷渣倒炉点及温度,保证前期渣脱磷率和泡沫化,最终前期脱磷率大于60%,排渣率大于50%.“留渣+双渣”技术,吨钢石灰消耗降低46.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号