首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
开发高发射率红外辐射材料是高温窑炉节能的重要方向。本工作采用高温固相反应工艺制备Ni2+掺杂MgCr2O4材料,研究了Ni2+掺杂量摩尔分数对MgCr2O4材料红外辐射性能的影响,探讨了影响MgCr2O4材料红外发射率的机理。结果表明,Ni2+能掺杂进入MgCr2O4材料晶格,所制备的Mg1–x NixCr2O4(0.1≤x≤0.5)材料产生了晶格畸变,少量Ni2+价态发生转变;同时,随着Ni2+掺杂量增加,氧空位浓度的增大,禁带宽度减小,所制备材料在近中红外波段的发射率均有提高。x=0.5的材料(Mg0.5Ni0.5Cr2O4)在...  相似文献   

2.
采用La掺杂和固态电解质Li1.3Al0.3Ti1.7(PO4)3包覆对LiNi0.9Co0.05Mn0.05O2进行改性,研究掺杂和包覆对LiNi0.9Co0.05Mn0.05O2结构与性能的影响。结果表明:适量的La掺杂可以降低LiNi0.9Co0.05Mn0.05O2材料的离子迁移阻抗,提高Li+扩散系数,稳定材料的结构,从而提高材料的放电比容量及循环性能,当La掺杂量为0.1 wt%时,首次放电比容量为180.1 mAh·g-1,经过100次循环后的容量保持率高达93.34%,远高于未掺杂样品的86.20%。Li1.3Al0.3Ti1....  相似文献   

3.
采用共沉淀法制备了锂离子电池正极材料Li1.2Mn0.6Ni0.2O2和Li1.2Ni0.18Mn0.58Cr0.04O2,并利用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对材料的晶体结构、形貌和电化学性能进行了表征。结果表明:掺Cr3+后材料的阳离子混排程度降低,层状结构更为规整,电化学性能明显优于Li1.2Mn0.6Ni0.2O2,其0.2C和1C首次放电容量分别为262.2 mAh/g和241.7 mAh/g,1C倍率下循环50次的容量保持率为95.5%。  相似文献   

4.
以沉淀烧结法合成 FeCuMnCoOx粉体,以模板法合成 CuS@Cu2O复合粉体;采用自制有机硅树脂为粘合剂,以上述粉体为功能填料制备太阳能吸收涂层。采用 XRD和 SEM表征粉体的成分与结构,分别采用紫外可见近红外分光光度计及红外光谱仪测定涂层在 200~2 000 nm和 3 000~2 5 000 nm(中远红外)的光谱反射率,并根据测得的光谱反射率计算涂层太阳能吸收率和发射率。研究 FeCuMnCoOx粉体中 Co的物相与含量对涂层光谱反射率的影响, FeCuMnCoOx粉体与 CuS@Cu2O的配比对涂层太阳能吸收率、发射率及品质因子的影响。结果表明: FeCuMnCoOx粉体的物相包括(Co,Mn)(Co,Mn)2O4、CoFeMnO4、CuFeMnO4和 Cu1.5Mn1.5O4。随着 Cu1.5Mn1.5O4和 CuFeMnO4相的增加, FeCuMnCoOx -有机硅涂层在 300~1 400 nm的反射率降低,太阳能吸收率( αsol)由 92.6%提升至 93.8%。合成的 CuS包覆在规则二十六面体 Cu2O表面,其粒径为 50~200 nm,光谱反射率( 200~2 000 nm)低于市售 CuS,不同 CuS/FeCuMnCoOx复合粉体配比的涂层太阳能吸收率在 91.8%~94.5%,发射率在 17.8%~21.1%。当 m(CuS)∶m(FeCuMnCoOx)=1∶5时,太阳能吸收率 αsol=94.5%,发射率 ε298K=18.2%,品质因子( αsol298K)=5.19,太阳能选择性吸收涂层性能达到最佳。  相似文献   

5.
以氢氧化物前驱体Ni0.32Co0.04Mn0.44(OH)2和LiOH·H2O为原料,采用煅烧技术制备了单晶二次球形富锂锰基正极材料Li1.2Ni0.32Co0.04Mn0.44O2;以KCl为烧结助剂和掺杂物,制备了不同KCl摩尔分数的富锂锰基正极材料Li1.2-xKxNi0.32Co0.04Mn0.44O2-xClx(x分别为0.01、0.02、0.03、0.04)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱技术(XPS)、选择区域电子衍射(SEAD)、充放电测试、CV测试和EIS测试对材料结构和电化学性能进行表征,探究了不同氯化钾掺杂量对材料电化学性能的影响。结果表明,熔融的KCl不但...  相似文献   

6.
通过磁控溅射的方法制备了LaMnO3+δ薄膜材料。掠入射X射线衍射(GIXRD)测试结果表明,薄膜材料为单一相结构的多晶氧化物,结构为正交畸变钙钛矿LaMnO3+δ;利用开尔文探针显微镜(KPFM)测得LaMnO3+δ薄膜接触电势差(CPD)的高分辨率图像,并通过CPD结果计算得知,在30~80℃温度范围内,随着温度的升高材料的功函数由4.452 eV升至4.644 eV,这是由于材料内部高价阳离子Mn4+浓度增加所致。该结果在XPS测试中得到进一步验证,Mn4+/Mn3+含量随温度的升高而升高。采用自组装电阻-温度测试系统的测试结果表明,薄膜材料在30~80℃范围内具有一定的负温度系数热敏特性。  相似文献   

7.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2具有放电比容量大、热稳定性好、成本低、安全性能好等优点,但其倍率性能有待进一步提升。本文采用水热法制备了K+掺杂LiNi1/3Co1/3Mn1/3O2材料LNCM-xK。通过X射线衍射谱、场发射扫描电镜和X射线光电子能谱表征LNCM-xK的形貌和结构,通过电化学工作站和蓝电测试系统测试其电化学性能。结果表明:K+掺杂能有效降低阳离子混排程度,改善LiNi1/3Co1/3Mn1/3O2材料的电化学性能,其中当x=0.125时K+掺杂LiNi1/3Co1/3Mn1/3O2样品(LNCM-0.125K)阳离子混排程度最低;LNCM-0.125K样品电化学性能最佳,0.2 C下50次循环后容量保持率为96.15%;在不同电流密度(0.2 C,0.5 C,1 C,2 C,5 C)下进行倍率性能测试,连续充放电30次后LNCM-0.125K样品容量保持率为97.00%。  相似文献   

8.
长余辉材料应用广泛,但种类繁多、发光机理难以被普遍阐释。针对发光–余辉性能好的Sr2MgSi2O7:Eu2+,Dy3+硅酸盐长余辉材料,构建Sr2MgSi2O7基质、Eu掺杂及(Eu,Dy)共掺杂Sr2MgSi2O7的分子模型,进行第一性原理计算。从电子结构角度解译电子跃迁俘获路径,并阐释Sr2MgSi2O7:Eu2+,Dy3+的持续发光机理。结果表明:Eu、Dy离子的掺入使Sr2MgSi2O7由间接带隙半导体转变为直接带隙半导体;Dy 5d态主要位于Fermi能级与Eu 5d态之间,并与Eu 5d态存在能量重叠,这证实了Dy3+作为电子陷阱的合理性。S...  相似文献   

9.
袁妮妮  白红存  安梅  胡修德  郭庆杰 《化工学报》2020,71(11):5294-5302
基于热重实验(TGA)和密度泛函理论(DFT)计算,对Cu低浓度掺杂Fe2O3载氧体(Cu-Fe2O3)与H2在化学链燃烧过程中反应活性和微观分子反应机理进行研究。TGA结果显示,Cu低浓度掺杂降低Fe2O3载氧体与H2反应表观活化能Ea (从83.9 kJ/mol降低至72.3 kJ/mol),因此,低浓度Cu掺杂由于原子尺度Cu掺杂缺陷的引入的确提高了Fe2O3载氧体转化率和晶格氧释放速率。DFT计算从分子水平证实Cu低浓度掺杂改变了Fe2O3载氧体与H2反应路径,路径分析表明,Cu掺杂使Fe2O3载氧体与H2反应能垒从2.30 eV分别降低至1.81 eV(Fe原子top位反应)和1.68 eV(Cu原子top位反应),Cu掺杂的Fe-基载氧体的氢还原反应优先发生在掺杂的Cu原子位,其次为Fe原子位。此外,计算结果表明,因Cu-O和Cu-Fe键的引入,低浓度Cu掺杂改变了Fe2O3载氧体微观结构,这对于载氧体的晶格氧快速释放是有利的。  相似文献   

10.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li1.2Ni0.16Mn0.56Cr0.08O2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g-1增加到246.6 mA·h·g-1,在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g-1增加到104.2 mA·h·g-1。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

11.
Cu-based spinel-oxides CuB2O4 (B = Fe, Mn, Cr, Ga, Al, or Fe0.75Mn0.25) were synthesized via a sol–gel method and subsequent solid-state reaction. The spinels mechanically mixed with γ-Al2O3 were evaluated for production of hydrogen from dimethyl ether steam reforming (DME SR). The reduction behavior and crystal property of these spinel-oxides, and the Cu oxidation state in spinel catalysts were investigated by temperature-programmed reduction, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. The reduced phases of the Cu-based spinel catalysts that strongly affected the catalytic activity and durability were composed of metallic copper with metal oxides (MnO (B = Mn), Cr2O3 (B = Cr), and Al2O3 (B = Al)) or with spinels (CuGa2O4 (B = Ga), Fe3O4 (B = Fe), and MnFe2O4 (B = Fe0.75Mn0.25). The stability of B metal oxides and the interaction between copper species and B metal oxides significantly contributed to the reforming performance.  相似文献   

12.
Ce0.5Zr0.5O2, Ce0.5Zr0.2Mn0.3O2 and Ce0.5Mn0.5O2 were prepared by citric acid sol–gel method. The effect of manganese on the structural and redox properties of ceria-based mixed oxides was investigated by means of powder X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analyses, temperature-programmed reduction and catalytic activity evaluation in the presence of excess O2. The results showed that some Mn cations could enter into the ceria lattice to form solid solutions. Mn3O4 appeared due to the instability of the mixed oxides with increment of the Mn doping ratio while another oxide Mn2O3 is detected in the physical mixture of ceria and manganese oxide. These Mn-doped mixed oxides, especially Ce0.5Mn0.5O2, presented better catalytic activities than Ce0.5Zr0.5O2 and even Pt-loaded catalyst for total oxidation of C3H8 and oxidative sorption of NO in the presence of excess oxygen. The oxidation ability of Mn and the strong interaction between Mn and Ce were suggested to promote the oxygen storage/transport capacity of the mixed oxides as well as reactive adsorption of nitric oxide and hydrocarbons.  相似文献   

13.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

14.
Two new phases with ordered anion vacancies, La8Mn8O23 and La4Mn4O11, both having the general formula AnBnO3n·1, form during the reduction of perovskites of the type LaMnO3.07. The solid LaMnO3.07, obtained in air at 1100°C and subsequently reduced in flowing carbon monoxide at 350°C, gives the stoichiometric perovskite LaMnO3.00, whose reduction starts at 420°C and is completed at 450°C with formation of the phase La8Mn8O23. The second reduction stage starts at approximately 500°C and is completed at 520°C with formation of La4Mn4O11. The solids in the range of composition LaMnO3.00-La8Mn8O23 and La8Mn8O23-La4Mn4O11 would seem by X-ray examination to be biphasic but the behaviour during reduction is typical of a monophasic substance, the oxygen pressure of which at constant temperature progressively decreases as the composition tends to the limiting values La8Mn8O23 and La4Mn4O11. The crystal lattice of La8Mn8O23 can be considered as resulting from a sequence of seven octahedral sheets, MnO6, alternated with tetrahedral sheets, MnO4, and the crystal lattice of La4Mn4O11 from a sequence of three MnO6 sheets alternating with MnO4 sheets.  相似文献   

15.
探讨了磷酸体系下不同因素对废旧锂电池正极材料中有价金属浸出效率的影响,结果表明:在浸出时间60min,反应温度60℃,磷酸浓度2mol/L,液固比20mL/g,还原剂(H2O2)体积分数为4%时,可得最佳浸出效果,Co、Li、Mn、Ni浸出效率分别可达96.3%、100%、98.8%和99.5%;浸出液添加相应比例金属离子,采用草酸共沉淀法制备前体材料(Ni1/3Co1/3Mn1/3)C2O4,并得到相应再生磷酸溶液。再生磷酸进行循环浸出实验,实验研究结果表明:循环浸出5次之后Li的浸出率仍可保持在90.1%,而Co、Mn和Ni的浸出率在75.0%以上。前体添加锂源Li2CO3煅烧合成Li(Ni1/3Co1/3Mn1/3)O2材料,考察了不同温度对Li(Ni1/3Co1/3Mn1/3)O2材料合成的影响,结果显示,当合成温度为800℃时,得到的材料性能最优良,初次放电容量可达136.4mA·h/g。在0.2C下经过50圈循环后容量保持率为97.2%。  相似文献   

16.
Solid solutions belonging to the Mn-rich region of the YCuxMn1–xO3 system have been studied. The powders were prepared by solid-state reaction between the corresponding oxides. Sintered ceramics were obtained by firing at 1100–1325 °C. The incorporation of 30 at.% Cu to the yttrium manganite induces the formation of a perovskite-type phase, with orthorhombic symmetry. Increase of the Cu amount do not appreciably affects the orthorhombicity factor b/a, up to an amount of 50 at.% Cu. Above this Cu amount, a multiphase system has been observed, with the presence of unreacted-Y2O3, YMnO3 and Y2Cu2O5, along with a perovskite phase. DC electrical conductivity measurements have shown a semiconducting behaviour for all the solid solutions with perovskite-type structure. The room temperature conductivity increases with Cu until 33 at.% Cu, and then decreases. Thermally activated small polaron hopping mechanism, between Mn3+ and Mn4+ cations, controls the conductivity in these ceramics. Results are discussed as a function of the Mn3+/Mn4+ ratio for each composition.  相似文献   

17.
A series of La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites having high specific surface areas and nanosized crystal domains was prepared by reactive grinding. The solids were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, C3H6, in the absence or presence of 5% H2O, Fourier transform infrared (FTIR) spectroscopy, as well as activity tests towards NO reduction by propene under the conditions of 3000 ppm NO, 3000 ppm C3H6, 1% O2, 0 or 10% H2O, and 50,000 h−1 space velocity. The objective was to investigate the influence of H2O addition on catalytic behavior. A good performance (100% NO conversion, 77% N2 yield, and 90% C3H6 conversion) was achieved at 600 °C over LaFe0.8Cu0.2O3 under a dry feed stream. With the exposure of LaFe0.8Cu0.2O3 to a humid atmosphere containing 10% water vapor, the catalytic activity was slightly decreased yielding 91% NO conversion, 51% N2 yield, and 86% C3H6 conversion. A competitive adsorption between H2O vapor with O2 and NO molecules at anion vacancies over LaFe0.8Cu0.2O3 was found by means of TPD studies here. A deactivation mechanism was therefore proposed involving the occupation of available active sites by water vapor, resulting in an inhibition of catalytic activity in C3H6 + NO + O2 reaction. This H2O deactivation was also verified to be strictly reversible by removing steam from the feed.  相似文献   

18.
With an aim to improve the 5 V capacity and cyclability of the LiMn1.5Ni0.5O4 spinel oxide, three series of Cr substitutions have been pursued with y ≤ 0.2: LiMn1.5Ni0.5−yCryO4, LiMn1.5−0.5yNi0.5−0.5yCryO4, and LiMn1.5−0.33yLi0.33yNi0.5−yCryO4. While the first series involves an increase in the Mn3+ content, the second and third series are designed to maintain charge neutrality (Mn4+, Ni2+, Cr3+, and Li+) without introducing Mn3+ ions. The LiMn1.5Ni0.5−yCryO4 series experiences a widening of the 4 V plateau and a decrease in the 5 V capacity compared to LiMn1.5Ni0.5O4 due to an increase in the Mn3+ content. On the other hand, the LiMn1.5−0.5yNi0.5−0.5yCryO4 series shows a suppression of the 4 V plateau and an increase in the 5 V capacity due to the elimination of the Mn3+ions. The LiMn1.5−0.33yLi0.33yNi0.5−yCryO4 series shows a suppression of the 4 V plateau at low Cr contents, but an increase in the 4 V plateau as the Cr content increases above 0.1. Among the various compositions investigated, LiMn1.45Ni0.45Cr0.1O4 exhibits the best combination of high 5 V capacity (128 mAh/g at 5–4.2 V) and excellent capacity retention (98% in 50 cycles) compared to 118 mAh/g and 92% for LiMn1.5Ni0.5O4.  相似文献   

19.
田军吉  刘少光 《工业催化》2015,23(8):654-658
四效催化剂的活性组分La0.8K0.2Co0.7Mn0.3O3的合成温度对柴油烟气的净化效果有较大影响,通过X射线衍射、电子扫描电镜、程序升温、比表面积检测和在线效率检测发现,750℃合成的四效催化剂净化柴油烟气的效果最好。通过K和Mn同时部分取代La Co O3中La和Co,探讨K和Mn对钙钛矿结构和烟气净化效果的影响。比表面积检测发现,涂覆改性γ-Al2O3后,整体式催化剂比表面积增加,催化性能得到有效改善。  相似文献   

20.
Structural, redox and catalytic deep oxidation properties of LaAl1−xMnxO3 (x=0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) solid solutions prepared by the citrate method and calcined at 1073 K were investigated. XRD analysis showed that all the LaAl1−xMnxO3 samples are single phase perovskite-type solid solutions. Particle sizes and surface areas (SA) are in the 280–1180 Å and 4–33 m2 g−1 ranges, respectively. Redox properties and the content of Mn4+ were derived from temperature programmed reduction (TPR) with H2. Two reduction steps are observed by TPR for pure LaMnO3, the first attributed to the reduction of Mn4+ to Mn3+ and the second due to complete reduction of Mn3+ to Mn2+. The presence of Al in the LaAl1−xMnxO3 solid solutions produces a strong promoting effect on the Mn4+→Mn3+ reducibility and inhibits the further reduction to Mn2+. Both for methane combustion and CO oxidation all Mn-containing perovskites are much more active than LaAlO3, so pointing to the essential role of the transition metal ion in developing highly active catalysts. Partial dilution with Al appears to enhance the specific activity of Mn sites for methane combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号