首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
辽河油田含水超稠油流变特性研究   总被引:10,自引:5,他引:10  
以辽河油田含水超稠油室内试验为依据,讨论了含水原油的转相问题以及含水率、温度和剪切速率对含水原油流变性的影响。影响含水原油相转变机理的因素包括含水率、油的粘度、混合物流速、液滴尺寸及其分布和流态。辽河油田含水超稠油的转相点为18%。在转相点之前,油为连续相,含水原油表观粘度随含水率上升而增加,且受温度影响较大;在转相点,含水原油表观粘度急剧下降。转相点后,水为连续相,含水原油表观粘度缓慢下降,受温度影响小。含水率和温度对流变指数也有较大的影响。含水率越高、温度越低含水原油流变指数越偏离1,非牛顿性越强。含水原油的全粘温曲线分为放射段和直线段。在放射段,原油表观粘度随剪切速率增大而减小;而在直线段,表观粘度与剪切速率无关。  相似文献   

2.
高内相稠油油包水乳状液流变性研究   总被引:1,自引:0,他引:1  
稠油形成的高内相W/O乳状液,其流动性对生产有很大影响,研究表明W/O乳状液流动特征可以用幂律模式描述,具有剪切稀释性,粘度与温度服从指数关系.随着内相体积浓度的增大,乳状液粘度会出现一个最大值,此时的内相体积浓就是乳状液的转相点.在内相体积浓度小于转相点时,粘度随内相体积浓度的增大粘度增大;在内相体积浓度大于转相点时,粘度随着内相体积浓度的增大粘度下降.在内相体积浓度大于转相点后,乳状液会由W/O型转变为O/W型,转相有一个过程.同时随着内相体积的增大、剪切速率的增大和温度的升高乳状液稳定性下降.高内相乳状液已经具有了粘弹流体的某些特征.本次研究在稠油生产中具有一定的理论意义.  相似文献   

3.
研究表明在一定温度和剪切速率条件下,一定油品的稠油W/O型乳状液表观粘度随含水率的增加呈现先增加后降低的趋势.基于这种变化现象的微观原因,本文从相、分子取向和原油胶体结构模型氢键理论3个方面进行系统的阐述.同时根据以上3种解释理论,对于不同性质的稠油W/O型乳状液转相点不同的原因也进行探讨分析,验证了3种解释理论的正确性.一般密度大和粘度高的原油所含胶质和沥青质等天然的W/O型乳化剂较多,W/O型乳状液的转相点亦较高.由稠油乳状液表观粘度变化及相转化过程对稠油的开发进行思考,不同稠油油藏初始含水饱和度使稠油乳状液表观粘度变化及相转化过程不同,分析认为考虑相转换对进一步深入认识油藏水驱规律具有较大的研究意义.  相似文献   

4.
以含蜡原油和纯净水为工质,制备了多组不同微观液滴分布的W/O型乳状液,结合微观显微镜和聚焦光束测量仪观察及测量分析,得出了乳状液分散相液滴的大小和分布规律,探讨了油包水乳状液分散相液滴分布规律对乳状液流变、析蜡特性的影响机理。结果表明,随含水率的增大,油水乳状液体系将有更高的表观黏度,屈服应力、凝点和析蜡点也随之增大,恒应力表现出逐渐减小的趋势。大庆含蜡原油的转相点为含水率60%左右。  相似文献   

5.
研究了不同条件下高含蜡油水体系的流变特性,为高凝油采出液油田集输提供理论支撑。采用VT550黏度仪测定不同条件下的油水黏度分布特性,得到了不同温度下原油的触变特性及不同温度、不同含水率下的剪切稀释特性,并通过CCD-ADAPTER显微测定仪观测得到不同含水率下的油水分布情况。研究结果表明,高凝油温度越高于凝点,屈服应力越小,且随温度升高,屈服应力下降幅度越小;高含水下油水体系即使温度低于凝点,其表观黏度仍较低;温度越接近于凝点,含水率越接近于转相点,剪切稀释性越明显,非牛顿流体特性越明显;含水率在转相点附近时,水相以均匀、密集的分散相形式分布于油相中,致使体系表观黏度较大。  相似文献   

6.
通过了解辽河油田稠油的驱替方式,依据现场采出含水原油乳状液的含水率及矿化度,确定配制模拟原油乳状液的盐水配方及油水体积比。用聚丙烯酰胺聚合物和石油磺酸盐表面活性剂制备了模拟乳状液,考察了乳化时间和搅拌速度对模拟原油乳状液运动粘度的影响,并用同一种破乳剂对模拟乳状液和现场采出乳状液进行了破乳脱水实验。结果表明,在乳化时间为6h,搅拌速度为2400r/min时,制得的乳状液与现场采出液的运动粘度接近。在破乳剂的脱水实验中得到了相似曲线,证明该模拟乳状液可以替代现场采出乳状液来对破乳剂进行初步评价。  相似文献   

7.
油井产物大多含水,随着油田开采时间的增长,油井产物含水率逐渐增大,在集输管路中形成油气水三相混输。事实上,油气水沿管路共流过程中,特别是经油嘴、阀门等管件时受到剧烈扰动,混输管路的液相大都是原油乳状液。因此,在进行油气水混输管路的压降计算时,以乳状液的物性作为混输管路液相的物性,其中乳状液粘度计算中考虑了温度、剪切速率和含水率3种因素。根据油气水三相混输管路的特点,采用流型模型的研究方法解决油气水三相混输工艺计算问题。  相似文献   

8.
从海底开采出的惠州25-3原油含水率相当高,为了确保其顺利输送,有必要研究含水率对惠州25-3原油流变性的影响。配制了与现场黏度相近的惠州25-3原油乳状液,通过实验研究了惠州25-3原油乳状液的凝点、黏度、屈服应力及触变性与含水率的关系。结果表明,惠州25-3原油乳状液的凝点在一定范围内随着含水率的增加而增加;黏度、屈服应力随着含水率的增加先缓慢上升,随后急剧上升;触变性随含水率的增加而增强。  相似文献   

9.
不同测试条件对含蜡原油流变特性的影响研究   总被引:1,自引:0,他引:1  
以大庆新庙原油为研究对象,采用流变学测试与分析方法,探讨了降温速率及剪切速率对原油低温静屈服值的影响、测试时间和冷却速率对原油低温流变曲线的影响,以及热处理温度、降温方式及降温速率对原油粘温曲线的影响.结果表明,非牛顿含蜡原油的流变特性强烈地依赖于测试条件.在此基础上,提出了含蜡原油流变特性测试思路,通过模拟计算或合理设计来确定降温速率、剪切速率、测试时间等测试条件,为其它含蜡原油流变特性的测定提供了参考.  相似文献   

10.
利用PVT装置模拟高温高压下热采稠油乳状液的形成过程,并通过RS600流变仪及光学显微镜,测定了渤海脱水原油与模拟水在不同条件下所形成的原油乳状液的黏度及微观特性,考察了影响热采稠油乳状液稳定性的因素。结果表明,随实验温度、搅拌速率以及防膨剂浓度的增加,稠油与模拟水乳化所形成的原油乳状液黏度增加,水滴数量增加、粒径减小,所形成的原油乳状液稳定性增强,而多元热流体的加入使得原油乳状液黏度降低,但水相颗粒以更小的粒径分布得更均匀。这主要与温度增加及多元热流体的作用有关,稠油黏度降低,再加上剪切速率增加及稠油中的天然乳化剂共同作用,使得稠油容易与模拟水乳化,形成稳定的W/O型乳状液。  相似文献   

11.
胜利油田超稠油流变性实验   总被引:1,自引:0,他引:1  
针对郑411-P7井进行基本物性测定,通过可编程式流变仪开展流变性实验研究,探讨了含水率、温度、剪切速率对流变性的影响.结果表明,含水率是影响含水超特稠油流变性的重要因素,随含水率的变化,含水超特稠油的表观粘度呈现出比较复杂的规律.油样含水率大于30%之后,非牛顿性已不明显.在较高含水率下流变性还受温度和剪切速率的影响...  相似文献   

12.
采用差示扫描量热和流变测试方法对大庆-俄罗斯混合原油的凝点、黏度、触变性、屈服值和析蜡特性进行测试分析。结果表明:相比于大庆原油,混合原油的流变性有所改善,随掺混俄油比例的增加,混合原油的析蜡点、析蜡峰温和含蜡量均呈下降趋势,导致其凝点、表观黏度、屈服值降低幅度逐渐增大,触变性明显减弱。庆-俄油混合比例为4∶4时,与大庆原油相比,混合原油的析蜡点降低7.9℃,析蜡峰温降低6.1℃,含蜡量降低13.9%。此时,混合原油平均降凝率为50.0%,不同剪切速率下的平均降黏率为96.3%,触变实验中的剪切应力总衰减率为14.0%,屈服值衰减率为97.0%。根据DSC测试结果,掺混俄油后不仅仅降低了原油含蜡量,同时也改变了蜡的结晶特性,这是导致混合原油流变性改善的主要原因。  相似文献   

13.
利用带压溶气原油乳化装置在不同溶气环境(CO2、CH4、N2)下对长庆原油进行带压乳化,并通过溶解度测定装置、溶气原油乳液稳定性分析装置、界面张力仪、高压流变仪测得不同气体的溶解度Rs、分水率fv、界面张力γ、界面膜弹性模量εd、溶气原油黏度μ,溶气原油乳状液表观黏度μap。结果表明,油水界面膜的存在会在一定程度上抑制气体从外相向内相的迁移,使溶气原油乳状液的溶解度小于内外相各自的溶解度之和;在溶CO2的环境下,由于其油/水界面张力最小,使其乳化效果最好,形成的带压W/O型乳状液乳滴最为细密,同时由于其油水界面弹性模量最大,形成的带压乳液体系最为稳定,乳液体系较原油体系的增黏率最明显;与之相反,在溶N2的环境下,带压乳液体系的稳定性较差,易于破乳。  相似文献   

14.
测试了基础油包水(简称W/O)型润肤乳的流变曲线,经数据拟合表明,W/O型润肤乳的流变性能符合Herschel-Bulkley模型.研究了硬脂酸镁、有机膨润土、油相比例等3个配方因素对W/O型润肤乳流变性能的影响.结果表明,随着硬脂酸镁或有机膨润土的加入,油相比例降低都使W/O型润肤乳的黏度、屈服应力和触变性增加,并使流动特性指数降低.但是,它们对W/O型润肤乳流变性能的作用机理不同,因此,影响效果也不同.  相似文献   

15.
复配了一种用于注蒸汽开采稠油的耐高温乳化降粘剂 ,该降粘剂采用阴离子、非离子表面活性剂、少量无机盐和水按一定比例配制而成 ,使用时 ,将该降粘剂稀释成水溶液 ,并以一定的比例与稠油混合 ,搅拌后使稠油乳化 ,并在相同条件下 ,选用不同的降粘剂 ,对其降粘性能进行测试和对比试验 ,结果表明 :该降粘剂降粘性能好 ,降粘率大于 99% ,且耐高温 ,当温度达到 3 0 0℃时 ,其降粘衰减率小于 0 .1 %。在蒸汽条件下 ,利用该高温下稳定的高效降粘剂 ,高温下乳化稠油 ,降低粘度 ,且温度在 50℃左右时 ,原油乳化效果理想 ,确保不形成油包水型乳状液 ,同时有效地乳化了原油中的胶质、沥青质、蜡质以解除由其产生的堵塞 ,改善了高稠原油的开采和输送性能 ,大幅度提高油井产量  相似文献   

16.
58℃石油蜡流动特性的研究   总被引:1,自引:0,他引:1  
58℃石油蜡是由烃类组成的复杂混合物,它的流动特性不仅是所含组分及其化合物的综合表现,而且还与热历史、剪切历史等密切相关。从储存、管输58℃石油蜡的工艺设计和科学管理需要出发,考虑58℃石油蜡在工程实际中的温度范围内呈现的流动性。用58℃石油蜡的粘温特性、流变特性、凝点、屈服应力、触变性等5项物性指标,评价其基本流动特性。采用RV2旋转粘度计测定了58℃石蜡油在57~95℃范围的流动特性,当油温在70℃以上时,石油蜡为牛顿流体,油温低于70℃时,石蜡油为非牛顿流体,而且油温越低非牛顿特性越强。58℃石油蜡的粘温关系与原油类似,其粘温曲线可分为放射段和直线段,但非牛顿特性强于原油。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号