首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
碳纤维增强碳化硅复合材料的力学性能与界面   总被引:7,自引:1,他引:6  
以ALN和Y2O3为烧结助剂,采用先驱体转化-热压烧结的方法制备了Cf/SiC复合材料,研究了烧结温度对复合材料界面和力学性能的影响及烧结助剂对显微结构的影响,结果表明:由于烧结时晶界液相和SiC-AIN固溶体的形成,当烧结温度为1750℃时,复合材料具有较高的致密度和较好的力学性能,当烧结温度升为1800℃时,在复合材料密度增大的同时,其力学性能也大幅度提高,此时复合材料抗弯强度与断裂韧性分别高达691.6MPa和20.7MPa.m^1/2,复合材料呈现韧性断裂;进一步提高烧结温度至1850℃时,虽然复合材料的密度有所增加,但由于纤维/基体界面结合过强以及纤维本身性能退化加剧,复合材料呈现典型的脆性断裂,其力学性能急剧降低;纤维/基体的界面是导致纤维增强陶瓷基复合材料性能的关键因素,其中,纤维的脱粘与拔出是主  相似文献   

2.
利用热压烧结法制备了Al2O3-TiC复合陶瓷材料,研究了TiC含量、烧结温度对材料致密度、抗弯强度、断裂韧性等性能的影响.结果表明:TiC颗粒的引入,可以有效提高Al2O3-TiC复合陶瓷材料的力学性能,当TiC含量为30Vol%、烧结温度为1 750℃时,Al2O3-TiC复合材料的断裂韧性值和抗弯强度值达到最大,分别为5.08 MPa·m1/2和620 MPa,试样的断裂方式主要为沿晶断裂,同时也含有穿晶断裂.  相似文献   

3.
以Al2O3和SiC为原料,利用热压烧结法制备了Al2O3-SiC复合陶瓷.采用三点弯曲法、单边切口梁法等手段和SEM方法分别测定和分析了该复合陶瓷的抗弯强度、断裂韧性、致密度和断口形貌.结果表明,Al2O3-SiC10wt%复合陶瓷的致密度随热压烧结温度的提高而逐渐提高,最高可达98.42%;抗弯强度随烧结温度的升高而呈上升趋势,在1 800℃时抗弯强度最大为623MPa;断裂韧性明显是随温度的升高加强,特别是在1 850℃烧结时达到最高值7.9MPa·m1/2.材料的断裂方式主要为沿晶断裂,随着烧结温度升高,穿晶断裂所占的比例增大.  相似文献   

4.
以碳化硅、磷酸和二氧化硅为原料,采用常压烧结工艺,制备了系列硅基磷酸盐为粘结剂的多孔碳化硅陶瓷,并对烧结样品的密度、孔隙率、物相、显微结构及其力学性能和耐酸碱性能进行了分析和表征.结果表明,烧结样品的密度随烧结温度和粘接剂含量的增加而减小,孔隙率的变化则相反,同时样品的抗折强度随之先增大再减小,并且其断裂方式为沿晶断裂,样品孔隙率均在23.1%~39.2%之间,在烧结温度为1 250℃、二氧化硅质量分数为1.78%时,抗折强度达到最大值39.158 MPa;样品的物相由碳化硅和二氧化硅以及少量的焦磷酸硅组成,二氧化硅的存在及磷酸盐的形成促进了碳化硅的烧结;所有样品耐酸性能较高,质量损失率为0.545 2%~1.777 2%,耐碱性能较弱,质量损失率约为100%,晶间二氧化硅和焦磷酸硅的存在及存在量是其主因.  相似文献   

5.
以Ti-45Al-8Nb-0.2B-0.2W-0.1Y元素粉末为原料,采用真空热压烧结工艺制备了高Nb-TiAl合金。结果表明,烧结温度对合金的显微组织影响显著,当烧结温度高于1 350℃时,可制备出致密度高、晶粒尺寸在20~30μm间的全片层组织高Nb-TiAl合金;提高烧结温度可促进Nb在基体相中的扩散,有助于加强Nb的固溶强化效果;合金的室温力学性能与显微组织密切相关,当烧结温度为1 350℃时,其显微硬度为744.5 HV 0.1/15,抗弯强度为674 MPa,显示出较好的室温力学性能。  相似文献   

6.
采用热压烧结方法制备Al2O3/Ti(C,N)-Nb-Cr-Y2O3复合陶瓷材料,并用扫描电子显微镜观察分析材料的微观结构。通过调整热压烧结工艺,研究烧结温度和保温时间对Al2O3/Ti(C,N)-Nb-Cr-Y2O3材料的显微组织与力学性能的影响。研究发现:烧结温度能显著影响陶瓷材料的显微组织和力学性能,温度在低于1650℃范围内,材料的致密度随温度升高而提高,力学性能也随之提升;但烧结温度超过1650℃时,晶粒异常长大,材料性能降低。热压烧结的保温时间以15min为宜。在烧结温度为1650℃、保温时间15min下,热压烧结Al2O3/Ti(C,N)-Nb-Cr-Y2O3陶瓷复合材料的力学性能良好,抗弯强度、维氏硬度、断裂韧度分别为735MPa、20.45GPa、8.9MPa·m1/2。  相似文献   

7.
以3μm α-Al_2O_3为主要原料,辅以纳米Al_2O_3、ZrO_2和TiC等原料,工业废渣——高炉渣为助烧剂,热压烧结制备ZTA/TiC复合陶瓷。利用XRF、XRD、DSC、SEM、三点弯曲试验和维氏压痕等表征手段,研究了原料组成和烧结温度对复合陶瓷物相组成、微观结构及力学性能的影响。结果表明:15%(质量分数,下同)纳米Al_2O_3及5%纳米TiC的加入有利于复合陶瓷力学性能的提升,烧结温度为1 650℃时,材料的抗弯强度和断裂韧性分别为510 MPa和6.58 MPa·m~(1/2),沿晶断裂与穿晶断裂同时存在,使复合陶瓷有较好的综合性能。添加质量分数为4%的高炉渣,1 550℃热压烧结30 min,得到的ZTA/TiC复合陶瓷相对密度为99.5%,抗弯强度和断裂韧性分别为555 MPa和5.20 MPa·m~(1/2),比相同温度下未添加高炉渣时的性能优良。烧结时高炉渣产生的液相可促进Al_2O_3棒晶生长并降低烧结温度;同时由于其析晶特性,陶瓷基体中的玻璃相减少,陶瓷强度提高。  相似文献   

8.
以α-Si3N4粉、α-Al2O3粉和Al N粉及烧结助剂MgO为原料,采用热压烧结的工艺制备了β-Sialon陶瓷材料,研究了烧结助剂MgO和烧结温度对sialon陶瓷力学性能和组织形貌的影响.结果表明,加入烧结助剂MgO提高了β-sialon陶瓷的致密度且降低了烧结温度,随着烧结温度的升高,β-sialon陶瓷抗弯强度、断裂韧性呈先增加后降低的变化规律,当烧结温度为1600℃时制备的β-sialon陶瓷材料结合紧密,抗弯强度以及断裂韧性达到最大,值分别为423 MPa、2.73 MPa·m1/2,材料的断裂方式主要是沿晶断裂.  相似文献   

9.
LaB6多晶材料的制备工艺研究   总被引:5,自引:0,他引:5  
利用真空热压烧结技术在真空热压烧结炉中制备了LaB6 多晶材料 .测试了采用不同烧结工艺制备的LaB6 多晶的性能 ,研究了烧结温度、压力和保温时间对多晶体致密度和弯曲强度的影响 ,从而确定了最佳的烧结工艺参数为烧结温度 2 10 0℃ ,压力 5 0MPa ,保温时间 2h .这一工艺条件下制备的LaB6 多晶致密度达 92 % ,弯曲强度达 110MPa .  相似文献   

10.
以Ti-B-C-N四元相陶瓷粉末为实验材料,采用真空热压烧结和放电等离子烧结(SPS)工艺对其进行烧结,真空热压烧结和放电等离子烧结温度分别为1900℃和1450℃,烧结压力分别为20 MPa和40 MPa,保温时间分别为1h和3min。使用X射线衍射仪分析试样物相组成,扫描电子显微镜观察试样表面微观形貌和断口形貌,并测试了烧结试样的硬度和抗弯强度。结果表明:真空热压烧结和放电等离子烧结块体的主要生成相为TiB2相和TiCN相,相对密度分别为97.40%和93.06%,热压烧结试样致密度高,颗粒尺寸大,放电等离子烧结试样孔隙较多,晶粒尺寸小;抗弯强度分别为259.98 MPa和335.17 MPa;弹性模量分别为89.11GPa和162.92GPa;洛氏硬度分别为78.8和84.9;放电等离子烧结试样表现出较好的力学性能。  相似文献   

11.
以α-Al2O3粉、TiC粉为原料,采用热压烧结工艺制备了Al2O3-TiC复合材料,系统研究了烧结温度以及成分对Al2O3-TiC复合材料的组织结构和力学性能的影响规律.结果表明:α-Al2O3与TiC间没有发生化学反应,两相间具有很好的化学相容性.TiC的引入有利于提高Al2O3-TiC复合材料的力学性能.1 600℃热压烧结的Al2O3-20%TiC复合材料具有最佳的力学性能,其抗弯强度和断裂韧性分别达到509.45 MPa和5.27 MPa·m1/2,复合材料的断裂方式主要是沿晶断裂,同时伴有穿晶断裂.  相似文献   

12.
为了研究铁电相LiNbO3对Al2O3陶瓷材料结构及其力学性能的影响,以Al2O3 Nb2O5 和LiCO3为主要原料,分别通过高温固相法和热压烧结法,制备LiNbO3/Al2O3复合材料.对制备的复合材料进行物相分析,抗折强度的测试以及显微形貌观察.结果发现:LiNbO3的加入有利于促进Al2O3的烧结,降低了Al2O3陶瓷的烧结温度.当烧结温度超过1 200℃时,复合材料的主晶相仍然为LiNbO3和Al2O3,但由于少量Li元素挥发,生成物相LiNb3O8.在1 200℃保温3h,通过高温固相法烧结,5vol% LiNbO3/95vol% Al2O3复合材料的抗弯强度达到了最高,为162.34MPa.在1 300℃,150MPa(保温保压1h)热压烧结制备的15 vol% LiNbO3/85 vol% Al2O3复合材料致密度为92.82%,其抗弯强度和断裂韧性分别为393.94 MPa和2.38 MPa· m1/2.该复合材料中的LiNbO3晶粒出现了非180°畴结构,这种电畴结构有利于改善材料的力学性能.  相似文献   

13.
利用氢电弧等离子体法制备了纳米Ni3Al金属间化合物,并以此为弥散相,以氧化铝为基体,采用热压烧结工艺在1 450℃下制得纳米Ni3Al/Al2O3复合陶瓷,并研究其力学性能和微观结构。结果表明:加入纳米Ni3Al的复合陶瓷断裂韧性比纯氧化铝陶瓷有了明显提高,当加入质量分数5%纳米Ni3Al时,断裂韧性最高达12.1 MPa.m1/2。利用扫描电子显微镜观察试样的断口形貌,分析陶瓷的微观结构发现:随着纳米Ni3Al含量的增加,片状晶数量逐渐降低,说明纳米Ni3Al质量分数的加入抑制了片晶的生长。  相似文献   

14.
以鳞片石墨,B4C,SiC,TiO2为原料,利用包覆工艺在不同热压温度下制备了W(C)=50%的C—SiC—B4C—TiB2复合材料,并详细研究了热压温度对复合材料显微组织和性能的影响规律.结果表明,当热压温度高于1850℃时,复合材料由C,SiC,B4C和TiB2这四相组成;复合材料的体积密度、抗折强度和断裂韧性均随着热压温度的升高而增加.2000oC热压时,复合材料的体积密度、气孔率、抗折强度和断裂韧性分别达到2.41g/cm^3,3.42%,176MPa和6.1MPa·m^1/2;热压温度升高,复合材料的碳相和陶瓷相逐渐致密,碳相最终形成了在陶瓷基体上镶嵌的直径为40μm橄榄球状和条状这两种形貌.碳/陶瓷相的弱界面分层诱导韧化和第二相TiB2与陶瓷基体之间热膨胀系数不匹配所致的残余应力使变形过程中微裂纹的扩展路径发展变化,使复合材料的韧性提高.  相似文献   

15.
应用微波加热技术进行高纯Al2O3陶瓷烧结是一种理想的选择.本文使用一种新型的圆柱形微波多模烧结腔体进行了Al2O3陶瓷的烧结研究,该设备可在短时间内达到较高的烧结温度,并能实现坯体的整体烧结.分别对纯Al2O3粉体和Al2O3/MgO混合粉体进行了烧结实验,结果表明,添加MgO作为助烧剂烧结得到的陶瓷试样的相对密度高于纯Al2O3粉体烧结得到的陶瓷试样,在1 700℃下保温40 min,其相对密度可以达到理论密度的97.8%,维氏硬度达22.3 HV/GPa.从SEM图中可观察到试样微观结构良好,晶粒大小均匀,致密化程度高.  相似文献   

16.
采用热压烧结方法制备了氧化铝/碳化钛复合陶瓷,对材料的摩擦因数和磨损率进行测量,研究了AlTiC中间合金增韧补强氧化铝陶瓷摩擦磨损行为与机制,探讨了氧化铝基精密结构陶瓷的摩擦磨损特性以及力学性能和微观结构对摩擦磨损特性的影响。结果表明,在室温和干摩擦条件下,滑动摩擦因数随法向载荷和转速的增加有下降趋势,室温下新型氧化铝基复相陶瓷材料的磨损机制以微观切削为主。  相似文献   

17.
1INTRODUCTION NiFe2O4cermets,whichareexpectedtobe usedastheinertanodesforaluminumelectrolysis, havelowcorrosionandoxidation,goodelectricalconductivityandhighthermalshockresistance[15]. Nickelferritespinelformsacorrosion resistant networkthatcontainstheelectricallyconductivecopper basedmetallicphase.Especially,Gregget al[6]foundacermetofNiFe2O4 18%NiO 17%Cu (massfraction),whichshowedfavorablecorrosion andconductivitypropertiesasinertanodesinsmalllaboratorycells.However,itwasalsoshowedth…  相似文献   

18.
利用机械活化-放电等离子烧结的方法,将Fe-Al-Al2O3粉末经机械活化后快速烧结,得到致密且晶粒细小的FeAl/Al2O3块体复合材料.研究表明,在w(球)∶w(粉)=13∶1、转速170 r/min、球磨时间25 h的球磨参数下,粉体中的纳米级Al2O3颗粒,在细化和活化Fe、Al金属粉末的同时,还能有效地阻止金属粉末在烧结前合金化生成金属间化合物.在烧结压力40 MPa、烧结温度1050℃、加热时间15 min、保温时间10min的烧结参数下,制备的FeAl/Al2O3复合材料的致密度可达96.4%.  相似文献   

19.
采用Ti-C-Al-Fe2O3反应体系,结合铸造和自蔓延高温合成(SHS)两种工艺,在湿砂型中浇注高温熔融的钢水,引燃SHS压块,从而发生自蔓延高温合成反应,生成了高硬度的陶瓷相TiC、Al2O3.通过改变Ti-C-Al-Fe2O3体系组分配比,探讨了体系在金属液内SHS反应对原位内生TiC、Al2O3尺寸与分布的影响.结果表明,随着过量Al元素的增加,陶瓷增强颗粒尺寸逐渐减小且分布更均匀;稀土CeO2加入量的增加,增强区更加致密,稀土CeO2添加剂含量为0.8%时制备的复合材料中原位形成的Al2O3、TiC颗粒尺寸较小,分布均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号