首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
论述了回火马氏体的20钢激光加热淬火后的组织及奥氏体晶粒变化的特征。结果证明:钢的非平衡组织经激光超高速加热淬火时,其奥氏体晶粒及淬火组织明显细化。同时,对激光超高速加热时奥氏体晶粒的超细化机理进行了初步的探讨。  相似文献   

2.
主要探讨了激冷铸铁挺柱经淬火及回火热处理后的显微组织与耐磨性,并了影响其耐磨性的主要组织因素。结果表明:淬火热处理可以使激冷铸铁挺柱的白口层获得以马氏体为主的基体组织,从而显著提高其耐磨性,且随淬火温度的提高耐磨性先下降后又升高,低温回火对耐磨性的变化规律影响不明显。  相似文献   

3.
论述了回火马氏体的20钢激光加热淬火后的组织及奥氏体晶粒变化的特征。结果表明:钢的非平衡组织经激光超高速加热淬火时,其奥氏体晶粒及淬火组织明显细化。同时,对激光超高速加热时奥氏体晶粒的超红化机理进行了初步的探讨。  相似文献   

4.
479Q型凸轮轴激光淬火工艺研究   总被引:4,自引:0,他引:4  
为提高凸轮轴表面硬度和耐磨性,对凸轮轴激光淬火过程进行分析,采用匀速转动的运动方式及预热和氩气保护措施,得到了稳定可靠的479Q型凸轮轴激光淬火工艺.使处理后的凸轮轴热变形小,淬火层均匀、无裂纹,硬度达HV600-700,宽度达6mm,深度达1mm,组织为极细的枝状马氏体.  相似文献   

5.
W18Cr4V高速钢激光相变强化组织及奥氏体晶粒度   总被引:2,自引:0,他引:2  
研究了W18Cr4V高速钢激光相变强化层的组织及奥氏体晶粒超细化的机理。强化层的组织由马氏体、残余奥氏体及末溶碳化物组成,其中片状马氏体量较多,板条马氏体量较少,其亚结构分别为孪晶和密度较高的位错,残余奥氏体量约为10% ̄15%,较常规热处理有明显减少,激光强化后晶粒度由原来的8级提高到12级。  相似文献   

6.
研究了W18Cr4V高速钢激光相变强化层的组织及奥氏体晶粒超细化的机理.强化层的组织由马氏体、残余奥氏体及未溶碳化物组成,其中片状马氏体量较多,板条马氏体量较少,其亚结构分别为孪晶和密度较高的位错.残余奥氏体量约为10%~15%,较常规热处理有明显减少,激光相变强化后晶粒度由原来的8级提高到12级.  相似文献   

7.
研究了1^#稀土硅铁合金、钛铁、钒铁、金属碲对低铬白口铸铁金相组织及机械性能的影响。结果表明经过变质处理的白口铸铁晶粒细化,冲击韧性有较大的提高。  相似文献   

8.
采用激光熔凝对4Cr5MoSiV模具钢进行了表面改性处理,研究了激光熔凝处理对模具钢组织和力学性能的影响.结果表明,材料经熔凝处理后,由表及里依次为熔凝层、淬火层、热影响区和基体.熔凝层由典型的柱状晶组成,熔凝层和淬火层之间存在一层极薄的等轴晶区;淬火层的晶粒发生细化和超细化.强化层厚度达1.1mm,平均硬度比基体提高26%,热影响区的厚度为0.3mm左右,强化层的耐磨性和耐腐蚀性显著提高.  相似文献   

9.
为探究马氏体钢与不锈钢焊接接头的组织演变及硬度特征,采用钨极氩弧焊对中国低活化马氏体(CLAM)钢和15-15Ti不锈钢进行焊接。接头热处理前后的显微组织和硬度进行对比。结果表明,焊态焊缝由板条马氏体+少量δ铁素体组成,硬度在407 HV~463 HV之间。CLAM钢热影响区分为完全淬火去和不完全淬火区,不完全淬火区有明显的软化现象,15-15Ti不锈钢热影响区是整个接头硬度最低的区域。热处理后,接头高硬度区减小,焊缝组织转变为回火马氏体,析出物增多,硬度相比焊态下降了约20%。  相似文献   

10.
研究微量硼对C100传动齿轮组织与性能的影响,比较高频淬火层与离子氮化层的性能。结果表明加入微量硼能够提高齿轮材料的淬透性,细化淬火层的晶粒,其中含硼0.003%的试样淬火层最深,晶粒较细,其硬化深度与16 h氮化层的深度相当,硬度较高。  相似文献   

11.
论述了不同原始状的T8A钢激光淬火后的组织和性能特征,并测定了淬硬层宽度、深度、残余奥氏体量及表面硬度等参数。实验结果表明:当功率密度一定时,改变扫描速度,T8A钢的淬硬层深度、宽度、残余奥氏体量及表面硬度均发生明显变化,当功率密度为2143W/cm~2,扫描速度为6mm/s时,最大淬硬层深度为0.77~0.83mm,表面层的组织为隐针马氏体、残余奥氏体和细小的碳化物,表面硬度达Hv790~1000。  相似文献   

12.
为研究不同激光功率参数对激光硬化后的最终显微组织、硬度和耐磨性的影响,应用宽带扫描技术进行了GCr15轴承钢激光强化处理试验,用光学显微镜和扫描电镜、x射线衍射仪等现代测试手段对GCr15轴承钢试样的显微组织和形貌尺寸特征进行了分析,磨损试验在MM200磨损试验机上进行.结果表明,激光参数变化所产生的显微组织变化造成了表面硬度值和磨损率的较大差异.激光功率大时,激光硬化层表面未溶碳化物量减少,使得表面马氏体中碳的质量分数增加,表面硬度增高.在干摩擦磨损过程中,激光改性层表面发生摩擦诱发马氏体相变.在干摩擦和油润滑两种条件下,激光功率越大,激光硬化层的抗磨损性越好.  相似文献   

13.
利用自动埋孤焊在Q235钢基材表面得到H3Cr5WMoV合金堆焊层,并对合金堆焊层进行了回火处理。比较研究了堆焊层在焊态和回火态的组织、硬度、耐磨性及抗热疲劳性能。结果表明,堆焊层组织为板条马氏体加残余奥氏体。回火态堆焊层的硬度和耐磨性同于焊态堆焊层,回火态堆焊层的抗热疲劳性能也好于焊态堆焊层。  相似文献   

14.
用X-ray衍射和激光共聚焦扫描显微镜对经激光表面熔凝处理的Mg-11Y-2.5Zn合金进行显微组织和相组成分析,并测量改性层硬度变化。研究结果表明,经激光表面熔凝处理后,改性层由熔化区和热影响区组成,熔化区的显微组织明显细化,硬度有所改善。研究了经激光表面处理和铸态Mg-11Y-2.5Zn合金的摩擦学性能,滑移速率为0.785m/s,载荷范围为20~320N。两者的摩擦因子无显著差异,但经激光表面处理的Mg-11Y-2.5Zn合金表现出较低的磨损率,归结于熔凝区的组织细化和硬度增加。SEM磨损表面形貌分析表明,激光表面熔凝处理的合金与未处理合金的磨损机制基本相同,轻微磨损阶段为磨粒磨损和剥层磨损,严重磨损阶段为表面热软化和熔化磨损。  相似文献   

15.
The effects of subsurface hardness on wear-resistance of martensitic steel 20Cr, 40CrSi, 60Mn, T8 and T10 in three-body abrasion under static load was investigated. It shows that the characteristic of the subsurface hardness distribution and the abrasive wear resistance is related to the substructure near the worn surface. The substructure of the tested martensite steel has an apparent relationship with the carbon content and steels with moderate carbon content and hardness exhibit good resistance to abrasive wear. The competition of the work-hardening effect and the temper softening effect, which resulted from deformation and friction heat generating during abrasive wear is considered to be a main reason for the relation among wear-resistance, hardness and substructure. At the test conditions, the wear-resistance of 40CrSi is the best.  相似文献   

16.
The effect ofrare earth(Re)and titanium(Ti)multi-modification on the impact wear behavior of Mn-B high-Si bainitic cast steel was investigated systematically.The experiments show that the impact wear resistance can be improved greatly with the addition of Re and Ti.Its wear loss is only about 1/3-1/2 as large as that of the unmodified bainitic cast steel.By the Re/Ti modification,coarse dendrite grains and bainitic/martensite duplex structure have been refined effectively,and the impact toughness ofthe bainitic cast steel is nearly tripled(10mm×10 mm×55 mm with unnotched sample).Consequently,the modified bauutic cast steel possesses good wear resistance under high impact.For both modified and unmodified bainitic cast steels,high hardness white layer and deformed zone are developed beneath the worn surface under the lugh impact wear,but the formation and propagation of cracks are different for these bainitic casting steels.Different models for the formation and propagation of cracks for both modified and unmodified bairutic cast steels under high impact wear are proposed.  相似文献   

17.
马氏体不锈钢等离子堆焊铁基合金组织及磨损性能   总被引:2,自引:0,他引:2  
为了研究马氏体不锈钢的表面性能,采用等离子堆焊技术在Z5CND16-04不锈钢表面制备铁基合金堆焊层.采用扫描电子显微镜、能谱仪、X射线衍射仪、显微硬度计及销盘磨损实验机等检测设备,对堆焊层的组织结构、成分、硬度和磨损性能进行了研究.结果表明,铁基合金堆焊层主要由α-Fe、(Fe,Cr,Mo)7C3和(Fe,Cr,Mo)23C6相组成,添加稀土元素后相组成无明显变化.铁基合金堆焊层的硬度和耐磨性均明显高于马氏体不锈钢基材.添加适量的CeO2后,明显细化了堆焊层的显微组织.  相似文献   

18.
低成本、高性能耐磨钢的需求增长及其开发都在进行中.本研究根据对耐磨钢性能的要求,试制了三种不同合金化方式的低合金耐磨钢,利用金相显微镜、透射电子显微镜、洛氏硬度计、万能材料试验机、夏氏冲击试验机和磨粒磨损实验机研究了其组织和性能,讨论了它们问的关系.结果表明:0.25C钢经不同工艺热处理后均获得了马氏体组织,并发生不同程度的自回火现象,硬度均大于45HRC,屈服强度大于1000MPa,抗拉强度大于1500MPa,并具有一定的塑性和韧性;在860℃淬火或920℃淬火并250℃回火后,实验钢的硬度、强度、塑性和韧性有最佳的配合,耐磨性最佳;V微合金化对钢的组织和性能没有明显影响.0.33C钢860℃或920℃奥氏体化后以等于或大于2.0%/s的冷速连续冷却或风冷至室温,回火或不回火即可得到由贝氏体与马氏体组成的混合组织,硬度超过50HRC,屈服强度大于900MPa,抗拉强度大于1500MPa,有一定的塑性和韧性,耐磨性良好,与商用淬火一回火耐磨钢类似;但由于具有高的加工硬化能力和良好的冲击韧性,在冲击条件下的耐磨性会优于商用钢.不同工艺热处理后的试验钢的磨损率随砂纸粒度和载荷增大而增大,载荷的影响较大,而磨粒的影响较小.  相似文献   

19.
对铸造C12A高强耐热钢焊接接头的金相组织变化及硬度特点等方面进行了研究分析.试验结果表明:铸造C12A高强耐热钢经过焊接,基体组织没有明显发生变化,过热区的金相组织为板条马氏体 奥氏体组织,其硬度有所降低;熔化区的金相组织为针状马氏体 奥氏体 板条马氏体,硬度很高;焊后经过回火处理的基体金相组织与性能没有变化,过热区的金相组织为保留板条马氏体形态的回火索氏体组织,较基体组织要粗大,其硬度要比基体有所下降;熔化区的金相组织转变为保留板条马氏体的回火索氏体,但组织较为基体组织要细小,表现为硬度要比基体的有所升高.铸造C12A焊接后再经回火处理,可使焊接后的组织差别消除;性能变化趋于平缓,有利于材料的使用.  相似文献   

20.
对比研究淬火回火工艺及正火回火工艺对P80沉淀硬化塑料模具试验钢组织及硬度的影响。结果表明:20 mm方块试样淬火后得到马氏体组织,正火后得到马氏体与少量贝氏体组织;随着回火温度的提高,硬度先升高后降低,500℃回火时硬度最高,但淬火回火试样的最高硬度(45 HRC)高于正火回火试样(42 HRC);100 mm方块试样在淬火加500℃回火后主要是板条回火马氏体组织,硬度范围为42~45 HRC,平均硬度为44 HRC;正火加500℃回火后主要是板条贝氏体组织,硬度范围为39~43 HRC,平均硬度为41 HRC。实际生产中采用热轧控冷加回火工艺生产P80的厚钢板能够满足用户的硬度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号