首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
以d-q坐标变换原理为理论基础,将坐标旋转角速度和旋转方向做适当修改,能分别检测出不平衡系统任意次谐波电流的正序和负序分量,以此提出了一种针对特定次谐波电流的检测方法。最后将检测到的正、负、零序分量相加,得到需检测的任意次谐波电流。经分析和实验,证明了该方法的正确性。  相似文献   

2.
三相四线制系统任意次谐波电流的检测新方法   总被引:1,自引:0,他引:1  
周林  栗秋华  张凤 《高电压技术》2007,33(11):160-163,179
利用有源电力滤波器补偿电力系统的无功和谐波电流时,为实时准确地检测出谐波电流,根据通用瞬时无功功率理论,提出了一种适用于三相四线制系统的任意次谐波电流的检测方法。该方法以传统的ip-iq法为基础,适当修改变换矩阵就可检测不对称系统任意次谐波的正序、负序分量,再等价三角变换所得的每相电流零序分量以检测出任意次谐波的零序分量,相加所得的正、负和零序分量即得到任意次谐波电流。该方法克服了传统的ip-iq法不能用于三相四线制系统任意次谐波检测的缺陷,具有原理简单,检测精度高和稳定性好等特点。理论分析和仿真结果都证实了该方法的准确性。  相似文献   

3.
李娟  张波  龙隽  陈斌 《电气应用》2006,25(10):84-87
提出一种精确检测不对称系统中各次谐波正、负、零序分量的新方法。该方法不直接采用对称分量法,而通过广义d_k-q_k旋转坐标变换,分别对三相电流按照相序a-b-c和a- c-b进行两次低通滤波得到三相电流的正、负序分量,同时分解零序分量并通过适当变换,之后通过低通滤波得到任意次谐波电流的零序分量,最终将对应分量求和得到检测结果。实验结果表明,无论三相电路电压是否畸变,通过该方法都能够得到精确的检测结果。对于三相不对称系统(包括缺相),仍然可以精确检测出任意次谐波电流,并可用于基波有功和无功电流的检测。利用本文提出的电流检测方法原理,研制出一台以微机为上位机的动态谐波电流检测仪,目前该装置已应用于某变电站的谐波电流检测中,运行情况良好。  相似文献   

4.
三相不对称系统任意次谐波电流检测新方法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了在三相不对称系统下,一种新的检测任意次谐波电流的方法。该方法通过构造任意初相角、具备与需要检测的任意次谐波相同频率的正弦信号和余弦信号,使其与三相电流进行相关运算,可分别检测出任意次谐波电流正序分量、负序分量和零序分量,将三种分量相加即可得到三相四线制系统任意次谐波电流的检测结果。该方法不存在锁相环电路,简化了电路结构。理论分析和仿真结果都证明了所提方法的正确性。  相似文献   

5.
本文提出一种精确检测不对称系统中各次谐波正负零序分量的新方法。该方法不直接采用对称分量法,而通过广义d_k-q_k旋转坐标变换,分别对三相电流按照相序a-b-c和a-c-b进行两次低通滤波得到三相电流的正、负序分量,同时分解零序分量,并通过低通滤波得到任意次谐波电流的零序分量。最终将对应分量求和得到检测结果。仿真分析表明,该方法无论三相电路电压是否畸变,都能够得到精确的检测结果。对于三相不对称系统(包括缺相),仍然可以精确检测出任意次谐波电流,并可用于基波有功和无功电流的检测。因此,它可应用于电力系统故障检测、保护和电力有源滤波器谐波电流检测中。  相似文献   

6.
电力有源滤波器是补偿电力系统谐波及无功功率的重要装置,其关键的环节是实时准确地检测出谐波电流。介绍了ip-iq法的基本原理,在此基础上提出了一种适用于三相四线制系统的任意次谐波电流的无锁相环的检测新方法,该方法可以实现对三相四线制不对称系统任意次谐波的正序、负序分量和零序分量的检测,最后将检测得到的正序、负序和零序相加就可以得到任意次谐波电流,理论分析和仿真结果都证实了本文所提出的新方法的准确性。  相似文献   

7.
电力有源滤波器是补偿电力系统谐波及无功功率的重要装置,其关键的环节是实时准确地检测出谐波电流.介绍了ip-iq法的基本原理,在此基础上提出了一种适用于三相四线制系统的任意次谐波电流的无锁相环的检测新方法,该方法可以实现对三相四线制不对称系统任意次谐波的正序、负序分量和零序分量的检测,最后将检测得到的正序、负序和零序相加就可以得到任意次谐波电流,理论分析和仿真结果都证实了本文所提出的新方法的准确性.  相似文献   

8.
基于广义dk-qk旋转坐标变换的谐波电流测方法   总被引:11,自引:0,他引:11  
本文提出三相电路广义dk-qk旋转坐标变换理论,发展出一种任意次谐波电流的检测方法。所谓广义dk-qk旋转坐标,系指出第k次待检测谐波电流角频率kw旋转的两相坐标系统。通过广义坐标变换,第k次谐波电流在dk-qk坐标系内成为与角频率无关的直流分量,从而可通过低通滤波及坐标反变换的方法将其检测出来,该方法具有无论三相电路电压是否畸变,理论上都能准确地检测出任意次谐波电流的优点,并可用于基波有功和无功电流的检测。因此,它可应用于电力系统故障检测、保护和电力有源滤波器谐波电流检测中。  相似文献   

9.
为了有效地检测供电系统中任意次正、负、零序谐波电流,提出了一种基于FBD的电流实时检测方法。首先利用倍频器和锁相环来产生任意次正序参考电压,并以此构造出相应的负序和零序参考电压;再利用参考电压和三相电流求得对应的等效电导;最后利用等效电导求得相应次谐波电流正、负、零序分量。克服了传统FBD电流检测法只能检测任意次谐波正序电流分量的局限性,拓展了FBD法的应用范围;与基于瞬时无功功率理论的电流检测方法相比,无Park变换和dq变换,减化了计算过程,可以有效地进行电流实时检测。仿真结果表明其正确性和有效性。  相似文献   

10.
电力有源滤波器关键的环节是实时准确地检测出谐波电流,本文针对三相四线制系统的任意次谐波电流检测的改进ip-iq法,以功能强大的图形化编程软件LabVIEW为开发平台,实现了任意次谐波电流检测系统,可以快速地检测出正序、负序和零序分量,将它们相加就可以得到任意次谐波电流.该系统结构简单,响应速度快,检测精度高,具有很好的参考价值.  相似文献   

11.
提出了一种适用于三相三线制不平衡系统的任意次谐波电流检测方法。该方法基于d-q旋转坐标变换,采用不同的旋转角速度旋转,以检测出不同次谐波电流的正负序分量。把所得的正负序分量相加便可得到所要检测的谐波分量。经过理论分析和仿真验证说明了该方法的正确性。  相似文献   

12.
低压并联型有源电力滤波器谐波检测算法的研究   总被引:1,自引:1,他引:0  
研究了低压并联型有源电力滤波器的谐波检测算法。通过d-q变换对三相电流进行坐标变换,提取其基波有功分量,从而检测出其谐波与无功分量。该改进算法为电流的d-q变换提供精确的参考相位。采用改进的检测算法,电压畸变不会影响该算法检测的精确度,并能有效地检测负载电流的谐波与无功分量。  相似文献   

13.
基于传统d q理论的谐波检测方法只能检测出三相对称系统中的谐波分量,但在电力系统故障检测和保护中,往往需要检测出对应于故障的特征次谐波电流。提出了一种改进的d q检测法,它能检测出三相不对称系统的任意次谐波电流。针对实际检测环节中,高次谐波通过加设在检测环节前端的低通滤波器时产生较大的相角误差,给出了一种切实可行的相位误差校正方法。理论分析和仿真结果证明了所提方法的正确性。  相似文献   

14.
周晴  毛亚辉  赵永彬 《电测与仪表》2012,49(2):27-31,36
谐波检测精度和实时性直接影响APF的补偿性能。本文在传统d-q谐波电流检测算法基础上进行了改进,针对锁相环易受电网波动影响的缺陷,采用基于正序基波提取器的d-q检测方法;针对低通滤波器滤波效果与响应速度难以兼顾的问题,采用基于直流分量的d-q检测方法;结合以上两种方法的优点,得出一种无锁相环无低通滤波器的d-q检测方法。仿真和实验结果表明,改进的d-q法能较准确地检测出补偿电流信号,且动态响应快,算法实现简单。  相似文献   

15.
为了更有效地治理电力系统谐波污染,文中采用一种基于小波变换的d-q电力谐波检测法。该方法使用小波变换将基于瞬时无功功率理论d-q法的LPF滤波环节替换,并在Park变换后滤除负序分量。小波变换采用小波多分辨率分析实现,将小波变换后的直流分量和各次交流分量进行重构,分别得到三相电流的基波和各次谐波。在PSCAD/EMTDC中进行基于小波变换的d-q法建模和仿真实验,并通过与d-q法的仿真结果进行比较来验证该方法的可行性和精确度。结果表明该方法能够更精确的检测基波和各频段谐波分量。  相似文献   

16.
无锁相环i_p-i_q检测任意次谐波电流的新方法   总被引:1,自引:2,他引:1  
周林  张凤  栗秋华  徐明  王伟 《高电压技术》2007,33(7):129-133
电力有源滤波器是补偿电力系统谐波及无功功率的重要装置,其关键的环节是实时准确地检测出谐波电流。为了检测出任意次谐波电流,消除其对电网的危害,提出了基于瞬时无功理论的无锁相环ip-iq检测方法,该法可检测三相三线制不对称系统任意次谐波的正、负序分量,并将其相加得到任意次谐波电流,而无锁相环ip-iq检测法中的变换矩阵中的频率换为一个固定值可省去传统ip-iq检测方法中锁相环,简化了电路。理论分析表明,ip-iq变换过程中频率偏差不影响检测结果,且可通过设置变换矩阵频率实现对任意次谐波的检测。仿真结果证实了本文所提出新方法的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号