首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
园区综合能源系统运营商和用户主体之间存在复杂的利益博弈关系,因此研究如何在提高系统整体经济效益的同时平衡各方主体利益具有必要性。为此,提出一种考虑多主体利益的园区综合能源系统日前经济优化调度策略。首先,考虑利用园区综合能源系统多能协同互补优势参与需求响应市场交易,建立两级递阶经济优化调度模型:上层是以运行利润最大为目标的运营商优化调度模型,下层是以用能成本最小为目标的用户优化响应模型。其次,采用基于目标级联法的分布式优化算法实现上下层模型的解耦和独立并行求解。最后,通过算例分析验证了所提策略通过综合需求响应可实现园区供、用能侧可调资源的协同优化,并通过分布式求解使各主体经济效益均达到最优。  相似文献   

2.
由于分布式能源补贴下降,通过聚合形成虚拟电厂参与日前市场竞价的模式成为了用户侧利益主体新的收益渠道。文章从虚拟电厂交易策略、收益分配以及用户侧利益主体博弈形成虚拟电厂3个环节为这一模式的实现设计了完整的交易机制。在交易策略方面,采用价格制定者型虚拟电厂交易策略模型,并结合区间优化方法对不确定量建模。在收益分配方面,设计了基于发电量及不确定性贡献度的分配机制。在虚拟电厂的形成问题中,基于联盟博弈理论分析各种联盟状态的稳定性,并通过博弈确定虚拟电厂形式。最后,通过算例对所提方法的有效性进行验证,结果显示,所提出的交易机制符合用户侧利益主体的特点,其分配机制考虑了参与者对不确定性的平抑作用,能够为用户侧利益主体提供辅助决策。  相似文献   

3.
通过分析含广义储能虚拟电厂以“虚拟”集成实体整体性参与调度优化和电力市场的流程,提出基于混合博弈的园区虚拟电厂广义储能两阶段共享策略及双层协调优化调度模型。第一阶段根据园区各类储能资源的响应特性,建立了包含实际储能与需求侧灵活性负荷、电动汽车构成的广义储能共享模型,进而构建了聚合多类储能资源的虚拟电厂主体架构。第二阶段建立以虚拟电厂运营商为上层领导者,园区储能服务商、负荷聚合商及能源供应商为下层跟随者的双层混合博弈模型。上层与下层之间采用基于Stackelberg的主从博弈进行购售电价及广义储能共享互动,保证领导者与跟随者的利益双赢;下层跟随者之间采用合作博弈实现多主体实时协同优化。算例分析表明:所提模型不仅实现了虚拟电厂利润最大与广义储能资源效用最优,也有效权衡各运营商间的利益。  相似文献   

4.
用户侧分布式储能具备优化用户电力负荷曲线和协调消纳系统侧可再生能源发电的能力。提出一种基于动态电价机制的配电系统用户侧分布式储能电能交易策略。首先,该策略在充分考虑新能源出力和用户电能需求不确定性的基础上,构建用户侧分布式储能和配电系统的日前电能调度模型;然后,根据动态电价机制对用户侧分布式储能调度计划和系统侧可再生能源消纳水平的影响,建立基于主从博弈的配电网运营商和用户侧储能运营商的电能交易模型,并采用启发式算法获取博弈模型的均衡解;最后,通过算例验证了所提电能交易策略可有效提升配电网运营商的经济效益与新能源消纳水平,并降低用户侧的运行成本。  相似文献   

5.
随着电力体制改革的深入,用户侧微电网逐渐形成多方投资+集中管控的运营模式,研究计及运营商利益的微电网能量优化具有重要的现实意义。文章提出一种以运营商购售电收益最大化和需求响应补偿成本最小化为目标的微电网能量优化调度策略。该策略计及需求响应多时间尺度特性,将集群空调和集群电动汽车2种需求响应资源纳入日前-日内-实时3种时间尺度调度计划中,并根据各阶段可再生能源预测信息以及电价信号,逐级优化储能出力和需求响应供应量,实现运营商的全局利益最大化。负荷聚集商基于集群空调和集群电动汽车的控制模型预测各时段可控负荷容量并实时响应调度指令。最后,通过算例验证本文所提调度策略的有效性。  相似文献   

6.
区域综合能源系统是以可再生能源为核心,多能源网络耦合、多利益主体协同的未来能源网络,多方主体间的制约平衡是实现系统优化运行的关键。构建了包含产能基地、系统管理商和综合能源用户三方主体的典型区域IES模型;并建立综合能源用户的热电负荷耦合特性模型,完善综合需求响应机制。基于综合需求响应和博弈方法,提出了一种两阶段优化调度策略,实现区域IES内三方主体利益诉求的制约平衡和日内联合优化。一阶段为系统管理商的经济收益优化,利用Stackelberg博弈和电价型IDR策略实现用户对系统管理商经济优化的制约;二阶段为产能基地与用户利益的联合优化,采用激励型IDR策略建立用户与产能基地的互利关系,利用联盟博弈实现用户间制约平衡,从而实现三方主体利益相互制约和联合优化。最后,通过仿真算例验证了所提调度策略的优越性。  相似文献   

7.
对虚拟电厂中多类型不确定性源的精确建模,有助于提升虚拟电厂调度策略的有效性.在详细分析不确定性源的不确定性特性的基础上,采用场景规划法和自适应鲁棒优化法对电价、风电出力和需求响应的不确定性进行建模.结合工程博弈思想,将不确定性源理性化为博弈主体,构建不确定性源和虚拟电厂运营商二者零和博弈模型,并采用粒子群优化算法求得博弈的均衡解.基于某地区的实际数据进行算例仿真分析,结果表明所提模型能够有效提升虚拟电厂调度结果的经济性与安全性.  相似文献   

8.
楼宇微网BMG(building microgrid)优化需兼顾提高不同主体的利益,传统优化难以满足需求,因此通过博弈论对BMG供需两侧协调优化进行研究。建立以运营商为领导者、楼宇用户为跟随者的主从博弈模型。在供能侧以运营商收益最大为目标,提出运营商灵活切换模式,并分析不同模式下供能模型选择策略,在证明Stackelberg均衡解存在性和唯一性后,采用提出的自适应差分进化算法优化供能侧。在用户侧考虑用户的综合需求响应IDR(integrated demand response),通过内部能源价格,以最大消费者剩余为目标来调整各用户用能策略。最后,通过算例仿真,验证所提方法和策略能够有效提高系统中各主体的收益。  相似文献   

9.
发展冷/热/电/气协同的综合能源系统是提高能源利用效率和新能源就地消纳率的有效手段,综合能源园区是综合能源系统的典型代表,研究其调度策略具有重要意义。建立了综合能源园区系统供给侧、需求侧和传输侧的模型:在需求侧,通过分析用户内部能量耦合关系提出了一种不影响用户舒适度的用户互补聚合响应策略;在传输侧,建立了环形热网的传输延时模型,以提高园区运营商收益和风电就地消纳率为目标,利用用户互补聚合响应与热能传输延时优势互补,提出了一种两阶段短期优化调度策略。对所提策略在6节点电网和5节点热网耦合系统算例中进行了多场景仿真分析,结果表明:考虑热能传输延时能够实现供需两侧高效配合并在日内调度中更充分地发挥用户互补聚合响应作用;日前优化调度和日内优化调度策略相配合的两阶段优化调度策略可同时提高运营商收益和风电消纳能力。  相似文献   

10.
基于主从博弈的含电动汽车虚拟电厂协调调度   总被引:3,自引:0,他引:3  
电动汽车作为配电网中最为重要的主动负荷,其充电优化管理成为目前售电侧开放下的重点研究领域之一。而虚拟电厂作为电网分布式能源管理的重要解决方案,其传统定义侧重于在发电侧聚合小容量分布式能源以提高可再生能源在电网中的消纳程度。结合售电侧开放下的电力市场改革需求,文中提出以虚拟电厂作为售电实体参与电动汽车充电管理的协调调度优化模型。在能量市场交易模型中,虚拟电厂作为分布式能源与电动汽车的聚合代理商参与电力市场电能申报与交易;在主从博弈模型中,虚拟电厂通过主从博弈制定合理的售电价格引导电动汽车的有序充电入网,并通过协调调度集中整合优化分布式能源。算例分析表明,通过虚拟电厂的集中优化管理可以有效实现分布式能源与电动汽车的能源互补并提升整体运行经济性。  相似文献   

11.
合理考虑能源生产和消耗过程中的不确定因素对于提升虚拟电厂调度策略的有效性和经济性具有重要意义。提出一种考虑需求响应和风险规避的虚拟电厂(VPP)二阶段优化调度策略。第1阶段的日前市场中VPP基于随机参数和确定性参数制定日前竞标策略,与市场运营机构签订双边合同;第2阶段通过实时市场价格VPP调整机组出力,同时承担多重不确定性因素所导致的调度决策风险,并采用CVaR表征VPP运营商的收益与风险之间的关系。仿真结果验证了所提方法的有效性。  相似文献   

12.
为了提高综合能源系统的低碳性与经济性,提出了煤制氢与碳捕集电厂联合运行模式下考虑低碳需求响应机制的综合能源系统优化调度。对煤制氢与富氧燃烧类型碳捕集电厂进行建模,并引入储碳罐、电转气装置以提高捕碳灵活性,降低制氧、制氢成本;将低碳需求响应机制引入综合能源系统调度模型中,并分析其减排能力;以运行成本最小为目标函数建立了综合能源系统的低碳经济调度模型。通过算例对所提策略进行验证,结果表明该策略能够提高风电消纳水平,降低整体系统的碳排放量,提升系统经济性。  相似文献   

13.
针对综合能源系统中多市场主体利益诉求不同以及源、荷不确定性造成的系统波动问题,提出了基于主从博弈和混合需求响应的能源枢纽(EH)多时间尺度优化调度策略。为有效评估多能负荷柔性特性,将建筑热传递模型与生活热水储存模型集成到EH模型中,建立了完善的综合需求响应模型。针对EH内利益诉求多元化的问题,基于Stackelberg博弈理论,构建了EH日前主从博弈优化调度模型。考虑到日前源、荷预测误差对EH优化运行的影响,提出了考虑激励型综合需求响应的EH日内短时间尺度优化策略,形成了日前与日内的闭环反馈优化。仿真结果表明考虑多种综合需求响应策略和主从博弈的EH多时间尺度优化调度策略,不仅可以降低系统运行成本,维护供需双方利益诉求,而且可以提升系统平抑源、荷波动的能力,实现EH经济、稳定运行。  相似文献   

14.
江叶峰  熊浩  胡宇  刘宇 《电力建设》2019,40(12):61-69
针对配电网中以电、热为代表的多类型负荷的快速增长,以及可控机组、储能装置、风机等分布式能源的协调调度问题,提出了考虑电热综合需求响应的虚拟电厂(virtual power plant,VPP)优化调度模型。首先,将风机、热电联产系统、多种储能装置、电锅炉、电热负荷集成为虚拟电厂,在用户侧,将基于电价型和激励型需求响应措施相结合,建立电热综合需求响应模型;然后,以最大化虚拟电厂运营利润为目标,采用机会约束模型描述风机、负荷预测的不确定性和内部功率平衡,并考虑各机组运行约束和网络安全约束;在合理控制和协调各组件出力的基础上生成调度方案,最后采用量子粒子群算法对模型进行求解。在算例中比较了不同需求响应方案对热电负荷曲线优化结果、网络安全、虚拟电厂经济性的影响,比较了不同置信水平下虚拟电厂的调度结果,从而验证了模型的可行性。  相似文献   

15.
含风电及电动汽车虚拟电厂参与电力市场的优化调度策略   总被引:3,自引:3,他引:0  
可再生能源发电及电动汽车充电的不确定性给电力系统运营带来新的挑战。针对含有风力发电和电动汽车充放电的虚拟电厂参与到电力市场中包含的不确定性问题,提出了一种混合储能虚拟电厂参与电力市场的优化调度策略。基于轮盘赌机制建立风力发电不确定性模型,将电动汽车的不确定性参数引入该模型,通过分析电力市场需求,制定基于不确定模型的随机优化调度方案。通过算例验证该方案的有效性和适用性,为混合储能虚拟电厂参与电力市场调度提供指导。  相似文献   

16.
如何制定虚拟电厂运营商的售电价格及购售电策略,实现与电动汽车用户的双赢,是目前研究的热点。基于此,提出了以虚拟电厂作为售电运营商参与电动汽车有序充电管理的主从博弈模型,其中运营商通过主从博弈制定合理的售电价格引导电动汽车有序充电,并协调各类分布式资源参与电力市场。计及风电出力的波动性和常规负荷的不确定性,在建模中引入了条件风险价值理论。模型通过Karush-Kuhn-Tucker条件和对偶理论转化为混合整数线性规划问题准确求解。最后在算例中验证了建模方法的有效性,给出了虚拟电厂运营商的最优定价策略及内部出力计划,且分析了不同电动汽车比例、储能最大容量、风险偏好系数对最优解的影响,为虚拟电厂运营商提高收益提供了优化思路 。  相似文献   

17.
为解决当前对虚拟电厂系统中多重不确定性源的表征考虑不全面且处理方法单一的问题,提出一种基于蒙特卡罗与曼哈顿概率距离的场景生成与削减法来对风光出力、电价进行建模,并利用区间法对碳价、需求响应进行建模;以虚拟电厂运行成本最小化为目标,综合考虑电碳交易及激励型需求响应机制,建立基于区间线性规划的虚拟电厂优化调度模型,采用强区间线性规划法中的两阶段分解算法对模型进行求解,针对不同不确定性源的特点,采用2种方法处理虚拟电厂系统中的多重不确定性。算例结果表明,该模型能够通过指标变化趋势有效地反映多重不确定性因素对系统调度结果的影响,在保证虚拟电厂系统安全运行的基础上提高经济性,区间形式的表示为决策者留出了一定的现实选择空间。  相似文献   

18.
在先进量测技术与调控终端的支持下,智能楼宇中的电动汽车与空调负荷等需求侧灵活资源具有良好的功率实时响应潜力,可通过聚合形成虚拟电厂进而参与系统调频辅助服务。为应对参与调频辅助服务时对用户需求的影响,本文提出智能楼宇型虚拟电厂的控制策略。首先分析了虚拟电厂的调频工作模式,并建立了智能楼宇型虚拟电厂的典型需求侧资源模型和虚拟储能模型。其次考虑调频信号与用户侧的不确定性,建立基于机会约束规划的日前优化调度模型。然后基于成本最优的原则,实现实时的功率分配。最后,通过仿真算例验证了本文提出的虚拟电厂调频策略的有效性和可行性,需求侧资源的联合调度能在保障用户需求的情况下提高虚拟电厂的收益。  相似文献   

19.
为了充分考虑综合能源系统的低碳性以及多能负荷响应特性的复杂性,提出了考虑综合需求响应和奖惩阶梯型碳交易机制的能源枢纽(Energy Hub, EH)主从博弈优化调度策略。首先,为有效评估多能负荷柔性特性和响应能力,将建筑热传递模型与生活热水储存模型集成到楼宇EH模型中,构建了考虑多种热量扰动因素的精细化综合需求响应模型。其次,考虑到供需双方的绿色调节能力,构建了奖惩阶梯型碳交易成本模型。并基于Stackelberg博弈理论,建立了能源枢纽运营商和用户的低碳优化模型。最后,提出了结合CPLEX工具箱的差分进化算法对所提模型进行求解。算例仿真验证了所提方法能够有效限制系统的碳排放量,充分发挥了需求侧资源的响应能力和减排潜力,实现了EH经济性和环保性的双赢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号