首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
一种用于测量快前沿高压脉冲的电阻分压器   总被引:3,自引:0,他引:3  
分析了电阻分压器中电感和对地电容对分压器响应特性的影响,在此基础上研制了一种用于测量快前沿高压脉冲的同轴型电阻分压器,介绍了分压器的制作过程,对其进行了方波响应标定,并应用于实验测量中。实验结果表明,该电阻分压器能满足测量要求,可用于幅值10kV左右、ns前沿的短脉冲测量。  相似文献   

2.
根据0.1TW脉冲功率源同轴型脉冲传输线的结构特点,设计了内嵌式电容分压器作为脉冲高电压测量探头,利用不锈钢金属膜连接传输线外筒和负载外筒,构成回流器作为脉冲强电流探头.用在线标定的方法对该电流电压测量探头进行了标定.结果表明:电容分压器和金属膜回流器具有性能稳定、功率负荷大等优点,是测量脉冲电压和电流较为理想的探头.  相似文献   

3.
一种同轴高压电容分压器的设计   总被引:13,自引:6,他引:13  
叙述了电容分压器的电路原理,分析并推导出同轴电容分压器的容值计算公式,给出了波形无畸变条件;在此基础上,设计出适用于强流电子束加速器的电容分压器,并应用于实验测试中。实验结果表明,设计的高压同轴电容分压器满足测量要求。  相似文献   

4.
一种电容补偿型高压电容分压器的设计   总被引:9,自引:1,他引:9  
根据高压脉冲实验测量的需要,阐述了外带积分器型、电阻补偿型及电容补偿型等几种电容分压器的工作原理,分析了影响各自响应时间的主要因素即对于测量ns量级快前沿高压脉冲信号,使用外带积分器型电容分压器时不宜采用大尺寸的伞式探针结构;使用电阻补偿型电容分压器时对其高压臂大电阻要求较高。在缺少高性能大阻值电阻的情况下,利用高压电容尝试设计并制作了电容补偿型电容分压器,其分压比约为9348,它在一定范围内可通过改变补偿电容值而方便地改变。实验结果与理论计算及PSpice软件的模拟结果基本一致,方波响应时间约为4.4ns,基本达到了设计目的。定标结果表明该分压器可用于测量高功率脉冲调制系统和强流电子束加速器中的高压脉冲。  相似文献   

5.
一种高压ns级脉冲形成电路   总被引:5,自引:5,他引:0  
分析了脉冲形成电路参数对脉冲上升时间的影响 ,设计了一种集脉冲电容器、脉冲整形器、电容分压器和匹配负载为一体的 ns级脉冲形成电路。该电路采用同轴结构 ,波阻抗为 5 0 Ω,电容分压器的分压比为 932 ,频率响应高达 1GHz。脉冲形成电路能产生脉冲前沿为 2 ns、后沿为 1.8ns、底宽为 5 .6 ns、峰值为 71k V的高压窄脉冲  相似文献   

6.
同轴电容分压器能有效避免寄生电容的影响,抗电磁干扰,稳定性良好。在同轴电容分压器中,电场分布不均匀,绝缘强度与同轴电容的半径有关,文章给出了同轴电容的半径选择原则。同时,温度对电容分压器精度的影响与其结构有关,文章建立了数学模型,分析了内外半径、壁厚、膨胀系数、温度等因素对误差的影响。计算与仿真的结果表明:固定外径和内径的比值为e,较大半径、薄的圆筒壁厚和低膨胀系数的材料可以使温度对测量精度的影响降到最低,同时保持最好的耐压能力。  相似文献   

7.
纳秒级不同脉宽的信号对电容分压器的影响   总被引:11,自引:5,他引:6  
为选择和设计适用的电容分压器以完善测量系统 ,先简析了电容分压器测量不同脉宽信号的不同结果 ,再研制了自积分模式电容分压器 (分压比为 1370 ,方波脉冲响应时间 0 .6 5ns)来测量脉宽分别为 10 0和 10ns的信号 ,实验结果与理论分析一致。  相似文献   

8.
为保证特高压气体绝缘开关设备(gas insulatedswitchgear,GIS)中特快速瞬态过电压(very fast transientovervoltage,VFTO)测量用手孔式电容传感器的准确性,必须对其进行标定。研制了用于电容传感器的标定系统,它由3种不同幅值及波形的脉冲源及相应测量系统组成。其中:低电压陡脉冲源用于校验电容传感器的高频特性;高电压陡脉冲源用于校验传感器在高压下的稳定性;低电压长波尾电源用于校验传感器的低频特性。水电阻分压器及金属膜电阻分压器用于测量3种脉冲源的输出波形,在标定电容分压器前,对电阻分压器的频率特性及线性度特性进行了试验。电容传感器的标定试验结果表明,华北电力大学和清华大学研制的电容传感器均具有良好的频率特性、线性度和稳定性,可以满足特高压GIS设备VFTO测量工作的需要。  相似文献   

9.
针对过电压在线监测系统中准确实时获取内外过电压信号困难的问题,提出了一种基于同轴电容的过电压传感器设计方案,通过ANSYS仿真证明了同轴电容器的具体结构和参数的可行性.本文涉及分压器的内外绝缘问题,其中内绝缘采用了复合绝缘技术,保证了同轴电容具有良好的温度特性与频率特性.该分压器低压壁分压单元采用云母电容同轴排列并串联一阻尼电阻,确保了分压单元采集信号的稳定性.  相似文献   

10.
基于电容分压器的电子式电压互感器的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在分析传光型电压互感器当前技术和发展的基础上,系统地总结并提出了电子式电压互感器的基本原理和设计要求。分析了基于电容分压器为感应探头的电子式电压互感器的基本原理和结构。给出了以因瓦合金为材料的同轴电容分压器的原理和设计方法。论述了电子式电压互感器的优点和性能。  相似文献   

11.
特高压电容式电压互感器(CVT)作为特高压电网中重要的一次设备,其电容分压器承受着来自电网的特高电压,建立特高压CVT电容分压器的宽频模型对研究其过电压分布具有重要的意义。通过网络分析仪测量特高压CVT电容分压器的宽频阻抗参数,然后利用矢量匹配法对测量到的宽频阻抗参数进行有理函数逼近,再通过电路综合理论得到特高压CVT电容分压器的宽频等效电路。通过对2台电容分压器的测量和建模结果进行对比分析可知,该方法适用于建立特高压CVT电容分压器宽频等效电路模型。  相似文献   

12.
脉冲功率装置中电容分压器的设计和应用   总被引:3,自引:0,他引:3  
为了测量脉冲功率装置形成线和传输线的电压,设计和标定了自积分电容分压器和V-dot探测器。在电容分压器结构设计中,重点叙述了降低结构电感、削弱局部高电场以及保持灵敏度一致的方法。电容分压器采用在线标定,标定用电阻分压器安装在电容分压器相对于轴线对称的位置,以减小对探头位置电场分布的影响。对阳加速器水传输线、脉冲形成线和PTS单路样机中储探测器的标定和实验结果表明:无论是自积分电容分压器还是V-dot探测器,只要取值合适,同时在结构设计中注意分布参数的控制,就都可以响应前沿为几十ns至接近μs量级的信号。  相似文献   

13.
光学电压互感器精密电容分压器的研制   总被引:2,自引:1,他引:1  
为了解决光学电压互感器中晶体材料的耐压问题,提出了采用分布式精密电容分压器的解决方案,并结合互感器使用环境建立了电力系统中高压电容分压器的数学模型,然后利用该模型与分压器误差特性的联系,重点分析了温度变化、杂散电容、相间干扰等误差因素对电容分压器的影响,并对这些误差因素的影响进行了合成。基于以上理论和误差分析方法应用有限元软件对 220 kV电容分压器进行了仿真计算,分析结果表明,合理选择电容分压器的主电容值可以使电容分压器的精度在0.1%以内,这为精密电容分压器的设计提供了理论依据。  相似文献   

14.
谐波电压比例标准装置及溯源方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决高压谐波电压比例标准的量值溯源问题,将传统的工频电压串联加法扩展应用于电磁式谐波电压比例标准的量值溯源,并基于压缩气体电容器研制了适用于50 Hz~2 500 Hz条件下使用的电容分压器,并完成其不同频率点下的比例量值溯源,经测试,电磁式谐波电压比例标准在50 Hz、150 Hz一直到2 500 Hz十个频率点下的测量误差优于0.02%,宽频电容分压器50 Hz~2 500 Hz测量误差优于0.1%。  相似文献   

15.
针对挂网运行中的高压电能表中电容分压器长期稳定性较差的问题,提出一种多级串联结构的干式电容分压器,并对其分压电容进行7 000h加速电压老化试验、温度试验和取能试验。试验结果表明,分压电容容量随电压老化时间不断衰减,且衰减分散性较大,试验初期衰减较快、后期趋缓,衰减特性可用高斯函数进行拟合,因此可通过电压加速老化和筛选分散性较小分压电容的方式提高电容分压器的长期稳定性;温度系数对电容分压器的影响较小,在计量精度允许范围内;取能电容分压器有稳定的功率输出,能够满足高压电能表中高电位电子线路的功耗要求。文章试验结论为高压电能表的稳定、可靠运行提供了技术支撑。  相似文献   

16.
在小型脉冲变压器中,常采用分布式电容分压器实现输出电压的实时监测,但实际的测量波形存在畸变,为此根据变压器电容分压等效电路模型,结合ANSYS软件进行有限元仿真计算,分析了脉冲高电压变压器中分布式电容分压器输出信号的主要贡献源及影响程度;用频率响应法测量计算电容分压输出信号的结果表明:分压输出信号中,感应至初级线圈的信号约占24%,初级线圈对电容分压信号的影响较大,是一个重要的干扰源。针对以上结果,利用ANSYS软件进行结构优化,提出了降低初级线圈影响的方法。  相似文献   

17.
一起500kV电容式电压互感器电压异常的分析处理   总被引:5,自引:4,他引:1  
对一起500 kV电容式电压互感器(CVT)投运后二次电压值异常的故障做了简要说明,结合电容式电压互感器的结构和工作原理对其进行了分析,发现CVT电容分压器电容单元安装错误是导致二次电压异常的原因。通过对CVT电容单元的现场调整,消除了故障,电压信号显示正常。同时,对CVT投运前的安装调试工作提出了合理化建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号