首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Force control of a two-link planar manipulator with one flexible link is considered in this study. The equations of motion are derived using the extended Hamilton's principle with only structural flexibility effects included in the dynamic model. The linear quadratic Gaussian/loop transfer recovery (LQG/LTR) design methodology is exploited to design a robust feedback control system that can handle modelling errors and sensor noise, and operate on Cartesian space trajectory errors. The LQG/LTR compensator together with a feedforward loop is used to simultaneously control the force exerted by the flexible manipulator normal to the environment and the position of the end-point in a direction tangent to the environment. Simulated results are presented for a numerical example.  相似文献   

2.
This paper focuses on the study of an adaptive perturbation control which tracks a desired time-based trajectory as close as possible for all times over a wide range of manipulator motion and payloads. The proposed adaptive control is based on the linearized perturbation equations in the vicinity of a nominal trajectory. The controlled system is characterized by feedforward and feedback components which can be computed separately and simultaneously. The feedforward component computes the nominal torques from the Newton-Euler equations of motion to compensate all the interaction forces among the various joints. The feedback component consisting of recursive least-square identification and an optimal adaptive self-tuning control algorithm for the linearized system computes the perturbation torques which reduce the position and velocity errors of the manipulator along the nominal trajectory. A computer simulation study was conducted to evaluate the performance of the proposed adaptive control.  相似文献   

3.
A method for synthesizing the feedforward torques and reference trajectory for a flexible two-link planar manipulator is proposed. These torques and the trajectory are not far from being time-optimal. The control law for each drive torque consists of two parts: a commanded feedforward torque and a linear angular position and velocity feedback.Initially, we theoretically prove that so-called 'fluent control enables an individual link to reach the desired hub acceleration with little error and avoid unwanted large flexible vibrations. With this control, the dynamics of a flexible link is close to the dynamics of the associated rigid link.We begin the design of the feedforward torques and reference trajectory by computing the control torques for an arm with two rigid links which are near time-optimal control functions. These torques are discontinuous functions of time. The jumps in the control torques are not acceptable for an arm with flexible links because large elastic vibrations appear in the links. This conclusion follows from a theoretical study of individual links and also from experimentation with one-link and two-link flexible arms. Therefore, fluent control is considered here. Designing this fluent control, we transform the obtained discontinuous control into continuous functions of time, taking into account the elasticity of flexible links. During the experiments with flexible arms, these continuous functions are used as commanded feedforward torques. We also feed on-line these control torques to a mathematical model of the arm with two rigid links and compute the corresponding desired angular velocities and positions of the links as functions of time. Then we feed this reference trajectory to the linear feedback system (usual PD-controller) of the flexible arm. Designed control does not excite large elastic vibrations although, simultaneously, it is not far from being time-optimal. The designed control algorithm has been successfully implemented in the experiments.  相似文献   

4.
This paper presents the study of an adaptive control which tracks a desired time-based trajectory as closely as possible for all times over a wide range of manipulator motion and payloads both in joint-variable coordinates and Cartesian coordinates. The proposed adaptive control is based on the linearized perturbation equations in the vicinity of a nominal trajectory. The controlled system is characterized by feedforward and feedback components which can be computed separately and simultaneously. The feedforward component computes the nominal torques from the Newton-Euler equations of motion either using the resolved joint information or the joint information from the trajectory planning program. This computation can be completed in O(n) time. The feedback component consisting of recursive least square identification and one-step optimal control algorithms for the linearized system computes the perturbation torques in O(n3) time. Because of the parallel structure, the computations of the adaptive control may be implemented in low-cost microprocessors. A computer simulation study Was conducted to evaluate the performance of the adaptive control in joint-variable coordinates for a three-joint robot arm. The feasibility of implementing the adaptive control in Cartesian coordinates using present day low-cost microprocessors is discussed.  相似文献   

5.
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.  相似文献   

6.
基于PD控制的机器人轨迹跟踪性能研究与比较   总被引:10,自引:0,他引:10       下载免费PDF全文
定义同一个Lyapunov函数,分析了基于PD的3种常用机器人轨迹跟踪算法的稳定性和鲁棒性,得到了新的结论,PD加前馈控制按指数收敛到0,PD及修改的PD加前馈控制收敛到一封闭球,增大反馈系数可使球半径任意小,基于PD的轨迹跟踪算法对模型误差及有界不确定性干扰具有鲁棒性,实验研究验证了分析结果,并对3种轨迹跟踪算法的控制性能进行比较。  相似文献   

7.
Presents an approach to the design and real-time implementation of an adaptive controller for a robotic manipulator based on digital signal processors. The Texas Instruments DSP (TMS320C31) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for robotic manipulators. In the proposed scheme, adaptation laws are derived from the direct model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feedforward and feedback controller and PI-type time-varying auxiliary control elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for an industrial robot with four joints in the joint space and Cartesian space  相似文献   

8.
平面双连杆受限柔性机器人臂的动力学建模*   总被引:12,自引:0,他引:12  
对一类平面双连杆受限柔性机器人臂的动力学建模问题进行研究,利用D’Alembert-Lagrange原理得到了一组描述该机器人系统运动性态的动力学方程。与已有的动力学模型相比,本文所建立的运动方程和振动方程具有模型准确、结构简单等特点,且具有与传统无约束刚性机器人类似的模型形式,因而有可能直接或间接利用现有的关于刚性机器人运动控制等方面的成果来研究复杂的受限柔性机器人的控制问题。  相似文献   

9.
In the paper, the trajectory tracking control problem is investigated for robotic manipulators which are not equipped with the tachometers. Our contribution consists in establishing uniform asymptotic stability in closed-loop system by using the dynamic position-feedback controller with feedforward. Using Lyapunov vector function and comparison principle, we construct the non-linear controller with variable gain matrices and first-order linear dynamic compensator such that the origin of the closed-loop system is uniformly asymptotically stable. The controller is shown to be robust with respect to parameters incertainties. We illustrate the utility of our result by simulation tests with reference to a two-link planar elbow robot manipulator.  相似文献   

10.
Space manipulator systems are designed to have lightweight structure and long arms in order to achieve reduction of fuel consumption and large reachable workspaces, respectively. Such systems are subject to link flexibilities. Moreover, space manipulator actuators are usually driven by harmonic gear mechanisms which lead to joint flexibility. These types of flexibility may cause vibrations both in the manipulator and the spacecraft making the positioning of the end-effector very difficult. Here, both types of flexibilities are lumped at the joints and the dynamic equations of a general flexible joint space manipulator are derived. Their internal structure is highlighted and similarities and differences with fixed-base robots are discussed. It is shown that one can exploit the derived dynamic structure in order to design a static feedback linearization control law and obtain an exact linearization and decoupling result. The application of such controllers is desired in space applications due to their small computational effort. In case of fixed-base manipulators, the effective use of a static feedback controller is feasible only if a simplified model is considered. Then, the proposed static feedback linearization control law is applied to achieve end-effector precise trajectory tracking in Cartesian space maintaining a desirable non-oscillatory motion of the spacecraft. The application of the proposed controller is illustrated by a planar seven degrees of freedom (dof) system.  相似文献   

11.
Experimental results for end-point positioning of multi-link flexible manipulators through end-point acceleration feedback are presented in this article. The advocated controllers are implemented on a two-link flexible arm developed at the Control/Robotics Research Laboratory at Polytechnic University. The advocated approach in this article is based on a two-stage control design. The first stage is a nonlinear (1) feedback linearizing controller corresponding to the rigid body motion of the manipulator. Because this scheme does not utilize any feedback from the end-point motion, significant vibrations are induced at the end effector. To this effect, and to enhance the robustness of the closed-loop dynamics to parameter variations, the inner loop is augmented with an outer loop based on a linear output LQR design that utilizes an end-point acceleration feedback. The forearm of the manipulator is significantly more flexible as compared with the upper arm. Experimental and simulation results validate the fact that the end-effector performance is significantly better with the proposed (1) feedback linearizing control as compared with the linear independent joint PD control. In addition, the nonlinear control offers other advantages in terms of smaller and smoother actuator torques and reducing the effects of nonlinearities. Close conformation between simulation and experimental results validates the accuracy of the model.  相似文献   

12.
A control strategy is developed for a robotic probe with tactile sensing to explore an unknown surface without losing contact. Digital computer simulations are performed of a three-link, planar manipulator exploring an ellipsoidal surface in order to test the control strategy. The equations of motion are written and linear, time-varying, state-variable feedback is applied to stabilize and decouple the system. A tactile sensor is simulated to supply the normal force between the robot and the surface. From the magnitude and direction of this force, the desired trajectory is determined. An inverse plant and force feedback are implemented to provide the required input torques to the robot's actuators.  相似文献   

13.
A decentralized adaptive control scheme is proposed for the trajectory tracking of a general n-degree-of-freedom robot manipulator. The robot is considered as a set of decoupled second-order systems with disturbances. The controller consists of feedforward from the desired trajectory based on the “inverse system” of the model, PID feedback from the actual trajectory, and auxiliary input for the compensation of the neglected terms in modeling in each subsystem. The gain is derived in diagonal matrix form, and is adjusted by the model reference adaptive control theory based on the Lyapunov's direct method. The result is high accuracy in path tracking despite the high speed, load change, and sudden torque disturbances. Numerical simulations on.a planar two-link robot manipulator are presented to show the performance under various practical considerations.  相似文献   

14.
A two-link robotic manipulator is a Multi-Input Multi-Output (MIMO), highly nonlinear and coupled system. Therefore, designing an efficient controller for this system is a challenging task for the control engineers. In this paper, the Fractional Order Fuzzy Proportional-Integral-Derivative (FOFPID) controller for a two-link planar rigid robotic manipulator for trajectory tracking problem is investigated. Robustness testing of FOFPID controller for model uncertainties, disturbance rejection and noise suppression is also investigated. To study the effectiveness of FOFPID controller, its performance is compared with other three controllers namely Fuzzy PID (FPID), Fractional Order PID (FOPID) and conventional PID. For tuning of parameters of all the controllers, Cuckoo Search Algorithm (CSA) optimization technique was used. Two performance indices namely Integral of Absolute Error (IAE) and Integral of Absolute Change in Controller Output (IACCO) having equal weightage for both the links are considered for minimization. Numerical simulation results clearly indicate the superiority of FOFPID controller over the other controllers for trajectory tracking, model uncertainties, disturbance rejection and noise suppression.  相似文献   

15.
This paper investigates the problem of global output feedback tracking control of flexible joint robots. Despite the fact that only link position and actuator position are available from measurements, the proposed controller ensures that the link position globally tracks the desired trajectory while keeping all the remaining signals bounded. The controller development uses a partial state-feedback linearization technique combined with the integrator backstepping control design method whereas a filter and an observer are utilized to remove the requirement of link and actuator velocity measurements. Partial state-feedback linearization of robot dynamics is performed by factoring the manipulator mass matrix into a quadratic form involving an integrable root matrix. The applicability of the proposed general design methodology is illustrated by an example of flexible joint planar robots. Numerical results for a two-link flexible joint planar robot are also provided.   相似文献   

16.
为实现对多自由度机械臂关节运动精确轨迹跟踪,提出一种基于非线性干扰观测器的广义模型预测轨迹跟踪控制方法。针对机械臂轨迹跟踪运动学子系统,采用广义预测控制(Generalized Predictive Control,GPC)方法设计期望的虚拟关节角速度。对于机械臂轨迹跟踪动力学子系统,考虑机械臂的参数不确定性和未知外界扰动,利用GPC方法设计关节力矩控制输入,基于非线性干扰观测器方法实时估计和补偿系统模型中的不确定性。在李雅普诺夫稳定性理论框架下证明了机械臂关节角位置和角速度的跟踪误差最终收敛于零的小邻域。数值仿真验证了所提出控制方法的有效性和优越性。  相似文献   

17.
An inverse dynamics control algorithm is developed for hybrid motion and contact force trajectory tracking control of flexible joint parallel manipulators. First, an open-tree structure is considered by the disconnection of adequate number of unactuated joints. The loop closure constraint equations are then included. Elimination of the joint reaction forces and the other intermediate variables yield a fourth-order relation between the actuator torques and the end-effector position and contact force variables, showing that the control torques do not have an instantaneous effect on the end-effector contact forces and accelerations because of the flexibility. The proposed control law provides simultaneous and asymptotically stable control of the end-effector contact forces and the motion along the constraint surfaces by utilizing the feedback of positions and velocities of the actuated joints and rotors. A two degree of freedom planar parallel manipulator is considered as an example to illustrate the effectiveness of the method.  相似文献   

18.
In this paper a modal integration method is proposed for analyzingthe dynamic behavior of multi-link planar flexible manipulators. Anon-linear finite element method is employed to derive theequations of motion in terms of a mixed set of generalizedcoordinates of the manipulator with rigid links and deformationparameters that characterize flexible deformations of the links.Using a perturbation method the vibrational motion of themanipulator is modeled as a first-order perturbation of thenon-linear nominal rigid link motion. For that purpose theflexible dynamic manipulator model is split into two parts. Arigidified model describes the nominal rigid link motion. Alinear system linearized about the nominal trajectory describesthe vibrational motion. In order to reduce the dimension of thelinearized system, a modal reduction technique is proposed. Thenmodal integration can be applied using only a small number of lowfrequency modes. The mode-acceleration concept is used to accountfor the pseudo static contribution of the high frequency modes.Applied to the motion of a manipulator mechanism the method isreferred to as adaptive modal integration since thetime-varying nature of the mode shape functions is taken intoaccount.A flexible two-link manipulator is analyzed to illustrate theperformance of the solution method. Comparisons between solutionsutilizing non-linear and perturbation analyzes with and withoutmodal integration show a good agreement. In a simulation with onlya few modes the accuracy is kept, whereas the computation time isdrastically reduced.  相似文献   

19.
机械手的模糊逆模型鲁棒控制   总被引:3,自引:0,他引:3  
提出一种基于模糊聚类和滑动模控制的模糊逆模型控制方法,并将其应用于动力学 方程未知的机械手轨迹控制.首先,采用C均值聚类算法构造两关节机械手的高木-关野 (T-S)模糊模型,并由此构造模糊系统的逆模型.然后,在提出的模糊逆模型控制结构中, 离散时间滑动模控制和时延控制(TDC)用于补偿模糊建模误差和外扰动,保证系统的全局 稳定性并改进其动态和稳态性能.系统的稳定性和轨迹误差的收敛性可以通过稳定性定理来 证明.最后,以两关节机械手的轨迹跟随控制为例,揭示了该设计方法的控制性能.  相似文献   

20.
In this paper, we propose a two level hierarchical control strategy to achieve accurate end-point position of a planar two-link flexible manipulator. The upper level consists of a feedforward rule-based supervisory controller that incorporates fuzzy logic, whereas the lower level consists of conventional controllers that combine shaft position-endpoint acceleration feedback for disturbance rejection properties and shaping of the (joint) actuator inputs to minimize the energy transferred to the flexible modes during commanded movements. The effectiveness of this hierarchical control strategy is verified by experimental results for various movements of the links, in various configurations. In particular, we illustrate how the hierarchical intelligent control strategy performs better than conventional control techniques for endpoint position control in the presence of flexure effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号