首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a new legged walking method for a novel passive-spine hexapod robot. This robot consists of several body segments connected by passive body joints. Each of the body segments carries two 1-DoF (degree of freedom) actuated legs. The robot is capable of achieving planar legged walking by rapidly abducting and adducting its legs. To model the mobility of a robot based on this simple design, the candidate configurations from all possible configurations are first selected in a mobility analysis of the robot based on the screw theory. All the feasible sequences of these candidate configurations are then searched to form planar locomotion gaits. Next, locomotive performance of the gaits is analyzed. Finally, the proposed locomotion design and gait planning methods are verified through simulations and experiments.  相似文献   

2.
This paper proposes a magnetic mechanical capsule robot which crawls in a fluid-filled tube. The developed capsule robot employs two locomotion mechanisms simultaneously. It has spiral ribs at both ends, which are rotated by a small on-board motor. Such rotating spiral structures generate a driving force of the capsule robot. We invented a magnetic mechanical mechanism to transfer the rotational motion of the frontal part into the linear motion of the middle part. Using this original mechanism, the linearly moving part at the middle of the capsule robot generates a supportive driving force. The improved mobility is evaluated in experiments. The developed capsule robot employing multiple locomotion mechanisms moves 44% faster than the spiral motion-based capsule robot. The developed magnetic mechanical mechanism and the mobile robotic platform could be used for pipe inspection robots or medical robots.  相似文献   

3.
Reconfigurable mobile planetary rovers are versatile platforms that may safely traverse cluttered environments by morphing their physical geometry. Planning paths for these adaptive robots is challenging due to their many degrees of freedom, and the need to consider potentially continuous platform reconfiguration along the length of the path. We propose a novel hierarchical structure for asymptotically optimal (AO) sampling‐based planners and specifically apply it to the state‐of‐the‐art Fast Marching Tree (FMT*) AO planner. Our algorithm assumes a decomposition of the full configuration space into multiple subspaces, and begins by rapidly finding a set of paths through one such subspace. This set of solutions is used to generate a biased sampling distribution, which is then explored to find a solution in the full configuration space. This technique provides a novel way to incorporate prior knowledge of subspaces to efficiently bias search within existing AO sampling‐based planners. Importantly, probabilistic completeness and asymptotic optimality are preserved. Experimental results in simulation are provided that benchmark the algorithm against state‐of‐the‐art sampling‐based planners without the hierarchical variation. Additional experimental results performed with a physical wheel‐on‐leg platform demonstrate application to planetary rover mobility and showcase how constraints such as actuator failures and sensor pointing may be easily incorporated into the planning problem. In minimizing an energy objective that combines an approximation of the mechanical work required for platform locomotion with that required for reconfiguration, the planner produces intuitive behaviors where the robot dynamically adjusts its footprint, varies its height, and clambers over obstacles using legged locomotion. These results illustrate the generality of the planner in exploiting the platform's mechanical ability to fluidly transition between various physical geometric configurations, and wheeled/legged locomotion modes, without the need for predefined configurations.  相似文献   

4.
This paper describes the design and development of a novel robot, which attempts to emulate the basilisk lizard's ability to run on the surface of water. Previous studies of the lizards themselves have characterized their means of staying afloat. The design of a biomimetic robot utilizing similar principles is discussed, modeled, and prototyped. Functionally, the robot uses a pair of identical four bar mechanisms, with a 180 deg phase shift to achieve locomotion on the water's surface. Simulations for determining robot lift and power requirements are presented. Through simulation and experimentation, parameters are varied with the focus being a maximization of the ratio of lift to power. Four legged robots were more easily stabilized, and had a higher lift-to-power ratio than two legged robots. Decreases in characteristic length and running speed, and increases in foot diameter and foot penetration depth all cause a higher lift to power ratio. Experimental lift approached 80 gr, and experimental performance exceeded 12 gr/W for four legged robots with circular feet. This work opens the door for legged robots to become ambulatory over both land and water, and represents a first step toward robots which run on the water instead of floating or swimming.  相似文献   

5.
This paper proposes a new wheel-track-leg hybrid robot. The hybrid robot comprises a robot body, four driving mechanisms, four independent track devices, two supporting legs and one wheel lifting mechanism, which can fully benefit different advantages from wheeled, tracked and legged robots to adapt itself to varied landforms (the rough terrain and high obstacle). Based on the symmetrical mechanical structure, locomotion modes of the mobile robot are analyzed. With the coordinate transformation matrix, the center of mass of the robot is described. Moreover, the stability pyramid method is used to analyze on the climbing motion, especially in the hybrid locomotion mode. Through theoretical analysis, simulation and experimental verification, it’s proven that the robot can remain stable in the process of climbing motion.  相似文献   

6.
为了改进传统足式机器人姿态求解算法的不足,提出了一种新型的适用于非结构地形的姿态求解方法.该算法将动力学分析得到机体运动加速度信息与惯性测量单元(IMU)的信息相融合,通过卡尔曼滤波器计算机器人机体的姿态信息.所提的算法也适用于机器人机体存在冲击力的情况。为了验证算法的有效性,对两款典型的足式机器人在非结构地形中的运动进行了仿真,结果表明提出的算法能够准确的求解出机器人的姿态信息,具有良好的有效性和通用性。  相似文献   

7.
To investigate the adaptability of a biped robot controlled by nonlinear oscillators with phase resetting based on central pattern generators, we examined the walking behavior of a biped robot on a splitbelt treadmill that has two parallel belts controlled independently. In an experiment, we demonstrated the dynamic interactions among the robot mechanical system, the oscillator control system, and the environment. The robot produced stable walking on the splitbelt treadmill at various belt speeds without changing the control strategy and parameters, despite a large discrepancy between the belt speeds. This is due to modulation of the locomotor rhythm and its phase through the phase resetting mechanism, which induces the relative phase between leg movements to shift from antiphase, and causes the duty factors to be autonomously modulated depending on the speed discrepancy between the belts. Such shifts of the relative phase and modulations of the duty factors are observed during human splitbelt treadmill walking. Clarifying the mechanisms producing such adaptive splitbelt treadmill walking will lead to a better understanding of the phase resetting mechanism in the generation of adaptive locomotion in biological systems and consequently to a guiding principle for designing control systems for legged robots.  相似文献   

8.
Although legged locomotion over a moderately rugged terrain can be accomplished by employing simple reactions to the ground contact information, a more effective approach, which allows predictively avoiding obstacles, requires a model of the environment and a control algorithm that takes this model into account when planning footsteps and leg movements. This article addresses the issues of terrain perception and modeling and foothold selection in a walking robot. An integrated system is presented that allows a legged robot to traverse previously unseen, uneven terrain using only onboard perception, provided that a reasonable general path is known. An efficient method for real‐time building of a local elevation map from sparse two‐dimensional (2D) range measurements of a miniature 2D laser scanner is described. The terrain mapping module supports a foothold selection algorithm, which employs unsupervised learning to create an adaptive decision surface. The robot can learn from realistic simulations; therefore no a priori expert‐given rules or parameters are used. The usefulness of our approach is demonstrated in experiments with the six‐legged robot Messor. We discuss the lessons learned in field tests and the modifications to our system that turned out to be essential for successful operation under real‐world conditions. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
《Advanced Robotics》2013,27(7):745-764
Passive mechanisms, such as free joints and viscoelastic components, enable natural oscillation of the robot body, which allows rhythmic locomotion with low energy and computational costs. In particular, joint viscoelasticity can be a powerful candidate for changing natural oscillation and so influence the operation performance of locomotion. The present study considers the passive mechanism of a trunk, and investigates the contributions of a trunk mechanism with redundant joints and tunable viscoelasticity to quadruped locomotion. A physical quadruped robot with a trunk mechanism is developed, and the walking performance of this robot for various gait patterns and joint viscoelasticities is investigated. A simulation model is also constructed based on the physical robot, and the contribution of the viscoelasticity to trunk oscillation and the appropriate joint viscoelasticity and number of trunk joints are discussed. Experimental results obtained using the physical robot indicate that the proposed trunk mechanism contributes to successful locomotion as compared to a robot with a rigid trunk and that the velocity is influenced by not only the gait pattern, but also the joint viscoelasticity (i.e., there are appropriate couplings of the joint viscoelasticity and gait pattern). The simulation results indicate that the trunk mechanism requires joint viscoelasticity in order to achieve oscillation and that a greater number of joints having a smaller joint viscoelasticity enables higher velocity. These results suggest that, in addition to the leg mechanism and the controller design, the design of the trunk mechanism is also important.  相似文献   

10.
The superior mobility characteristics of legged animals compared to those of wheeled or tracked vehicles for off‐road locomotion motivated the development of artificial walking machines. The sustained worldwide efforts for the last few decades resulted in a large number of legged robots with different levels of sophistication. Here, various design approaches made so far to realize artificial legged locomotion are discussed. Mainly, different vehicle configurations as well as leg mechanisms which are already explored by researchers are reviewed in brief. The author hopes that this will serve as a brief account of previous research efforts and help future walking robot designers to develop more sophisticated machines. © 2003 Wiley Periodicals, Inc.  相似文献   

11.
To study the design, control and energetics of autonomous dynamically stable legged machines we have built a planar one-legged robot, the ARL Monopod. Its top running speed of 4.3 km/h (1.2 m/s) makes it the fastest electrically actuated legged robot to date. We adapted Raibert's control laws for the low power electric actuation necessary for autonomous locomotion and performed a detailed energetic analysis of our experiments. A comparison shows that the ARL Monopod with its 125 W average power consumption is more energy efficient than previously built robots.  相似文献   

12.
This paper presents the expansion and implementation of the controlled passive dynamic running (CPDR) strategy for legged robots, previously presented by the authors. The CPDR exploits the underlying passive dynamic operation of the robot's mechanical systems to reduce the energy spent for locomotion. Meanwhile, it ensures the stability of the vertical and forward motions as the robot speed varies. An "adaptive energy controller" stabilizes the hopping height accurately over a range of operating conditions. The passive dynamic derivations for the Monopod, together with the foot-placement algorithm and model-based joint controllers, are used to control the forward speed about the passive operation trajectories. New locomotion variables are used for robust synchronization between the hip-body and the leg oscillations. ARL-Monopod II achieved a speed of 1.25 m/s with specific resistance (a measure for energy cost of locomotion) of 30% of the earlier robot ARL-Monopod I, its predecessor, due to the newer hip and leg design and application of the CPDR control strategy.  相似文献   

13.
Compact structure and flexibility is normally considered as a pair of incompatible characteristics for legged microrobots. Most robots choose complex structure of multi-joint legs to attain the flexibility, while some microrobots have poor flexibility for miniaturization. To attain a microrobot with both compact structure and flexible locomotion, we designed a novel type of biomimetic locomotion employing ionic conducting polymer film (ICPF) actuators as one-DOF legs. We developed several prototype microrobots using this locomotion. In this paper, a microrobot using this biomimetic locomotion, named Walker-3, utilizing six ICPF actuators with two-DOF motion is developed. It is 30 mm in length, 55 mm in width and 8 mm in height (in static state). Experimental results indicate that Walker-3 can attain 6 mm/s of walking speed and 7.1 deg/s of rotating speed and climb on a 30° ascent at a speed of 0.5 mm/s with control signal of 10 V, 0.5 Hz. It is also suitable for uncertain terrain, such as climbing on a stairs less than 2 mm high and striding over a pit less than 5 mm wide. It has better flexibility, balance and load ability than its predecessors. We compared it with some legged microrobots and the result shows a microrobot with this biomimetic locomotion can have both compact structure and multi DOF locomotion.  相似文献   

14.
徐凯  陈小平 《软件学报》2009,20(8):2170-2180
结合步行机器人行走的动力学特性,通过对机器人的加速度传感器信息进行离散傅立叶变换,建立了行走相关特征值的概率模型.通过使用马氏距离作为判定标准,对步行机器人的行走稳定性给出定量描述.四足步行机器人平台上的实验结果表明,该模型能够实时反映机器人的行走特性,帮助机器人在行走状态受环境影响发生改变时,根据行走特征及时调整运动,保证其稳定性.  相似文献   

15.
Robust climbing in unstructured environments has been one of the long-standing challenges in robotics research. Among others, the control of large adhesion forces is still an important problem that significantly restricts the locomotion performance of climbing robots. The main contribution of this paper is to propose a novel approach to autonomous robot climbing which makes use of hot melt adhesion (HMA). The HMA material is known as an economical solution to achieve large adhesion forces, which can be varied by controlling the material temperature. For locomotion on both inclined and vertical walls, this paper investigates the basic characteristics of HMA material, and proposes a design and control of a climbing robot that uses the HMA material for attaching and detaching its body to the environment. The robot is equipped with servomotors and thermal control units to actively vary the temperature of the material, and the coordination of these components enables the robot to walk against the gravitational forces even with a relatively large body weight. A real-world platform is used to demonstrate locomotion on a vertical wall, and the experimental result shows the feasibility and overall performances of this approach.  相似文献   

16.
This paper presents the design and implementation of a modular self-reconfigurable robot with enhanced locomotion capabilities. It is a small hexahedron robot which is 160 mm × 140 mm × 60 mm in size and 405 g in weight. The robot is driven by three omnidirectional wheels, with up and down symmetrical structure. The robot can perform rectilinear and rotational locomotion, and turn clockwise and counterclockwise without limitation. A new docking mechanism that combines the advantages of falcula and pin-hole has been designed for attaching and detaching different modules. The communication and image data transmission are based on a wireless network. The kinematics and dynamics of the single module has been analyzed, and the enhanced locomotion capabilities of the prototype robot are verified through experiments. The maximum linear velocity is 25.1cm/s, which is much faster than other modular self-reconfigurable robots. The mobility of two connected modules is analyzed in the ADAMS simulator. The locomotion of the docking modules is more flexible. Simulations on the wheel and crawling locomotion are conducted, the trajectories of the robot are shown, and the movement efficiency is analyzed. The docking mechanisms are tested through docking experiments, and the effectiveness has been verified. When the transmission time interval between the adjacent packets is more than 4 ms, the wireless network will not lose any packet at the maximum effective distance of 37 m in indoor environments.  相似文献   

17.
《Advanced Robotics》2013,27(8):761-778
The path planning of legged locomotion is complex in that path generation is based on constraints not only from body motion, but also from leg motion. A general approach to path planning will fail in generating a feasible path for walking machines when facing the huge searching space of legged locomotion. In this paper, an effective method of path planning is introduced by virtue of terrain evaluation. It maps obstacles into the robot configuration space by evaluating the obstacles' influence on the legged locomotion. The evaluation produces an index of terrain, called terrain complexity, for path planning. Using potential-guided searching, the terrain with mapped obstacles is searched to generate a feasible path.  相似文献   

18.
Today’s robots are able to perform very limited locomotion tasks by consuming high energy although animals are able to carry out very complicated but stable locomotion tasks using less control inputs and energy. Therefore, it is important to understand the principles of animal locomotion in order to develop efficient legged robots. This paper presents a U-shape visco-elastic beam mechanism that is able to run like a bounding animal when it is actuated by a simple pendulum at the torsional resonance frequency of the elastic body. A simple physical model has been developed to investigate the dynamics of the mechanism and the natural body dynamics of quadrupeds. In the mechanism, a small rotating mass was attached to a DC motor which was mounted on the center of the spine. When this motor is actuated at around the torsional resonance frequency of the elastic body, the robot starts to move and it exhibits a self-organized locomotion behavior. The self-organized locomotion process of the robot does not require any central authority, sensory feedback or external element imposing a planned motion. Comparing the bounding locomotion of the beam mechanism with those of well-known quadrupeds such as a horse, greyhound and cheetah, it can be concluded that the pendulum-driven U-shaped visco-elastic beam displays kinematic behavior similar to a horse, in terms of both experimental and simulation results. Interestingly, this bounding locomotion occurs only if the shape ratio and the actuation frequencies of the beam are close to those of the fastest quadrupeds.  相似文献   

19.
Robot walking, while appealing for its resemblance to human motion, is not an obvious choice when both economy and versatility are desired. Wheeled vehicles are surprisingly capable on different terrains and are nearly unbeatable in terms of economy. In specialized situations, legged locomotion may become preferable. But legged locomotion entails inertial and other energetic costs that do not appear in wheeled machines. The force and work requirements of legged locomotion also only appear energetically economical when considering the unique features of the human body and human muscle. The attainment of high economy in a legged robot requires either actuators similar to humans' or discontinuous nonlinear mechanisms that can reduce energetic losses to support a load. The attainment of high versatility indicates that the ZMP is likely to remain applicable, unless serious advances are made in other control theoretical approaches.  相似文献   

20.
Xing  Huiming  Guo  Shuxiang  Shi  Liwei  Hou  Xihuan  Liu  Yu  Liu  Huikang 《Microsystem Technologies》2020,26(2):475-487

This paper designs a novel legged, multi-vectored water-jet composite driving mechanism (LMWCDM) for the amphibious spherical robot (ASRobot) and presents modeling and experimental evaluation of this composite driving mechanism. In order to crawl on land flexibly, the robot was designed in SolidWorks and simulated in ADAMS environment with the sit to stand motion and a crawling gait. Then the simulation results, such as driving torques, guided the selection of servomotors in different joints. In aquatic environment, the dynamic modeling of ASRobot was analyzed by synthesizing the propulsive vectors of four propellers in each workspace of legs. Simplistically, multiple underwater locomotion, such as longitudinal and lateral motion, rotary motion, sinking and floating motion and cruising motion, were proposed. Thus, using a six-axis force/torque sensor at the equivalent mass center, a force and torque measuring mechanism was developed to obtain the direct propulsive effect and validate the modeling of the driving system. To evaluate the robot design and selection of servomotors, experiments of the sit to stand motion and crawling motion were conducted. Underwater testing experiments of LMWCDM were carried out to verify the modeling of rotary motion, sinking and floating motion. Besides, underwater test of the robot prototype also proved the highly flexible and swift motion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号