首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以聚醚砜(PES)为原料,1-甲基-2-吡咯烷酮(NMP)为溶剂,氧化石墨烯(GO)为填充剂,采用静电纺丝技术成功制备GO/PES复合纤维膜。结果表明,当GO添加量为0.2%(质量分数)时,复合纤维膜拉伸强度为2.55MPa,弹性模量为23.88MPa,断裂伸长率为49.78%,电导率达到2.74×10~(-7)S/m,比未添加GO的纤维膜提高了4个数量级。  相似文献   

2.
采用熔融共混纺丝工艺制备多壁碳纳米管(MWCNTs)质量分数分别为0.1%和0.5%的MWCNTs/PEEK(聚醚醚酮)复合纤维,研究了紧张热定型过程中热定型温度和降温速率对复合纤维结构和性能的影响。采用TEM、SEM、DSC、DMA、XRD和单纤维电子强力仪研究了复合纤维的形貌、结构和性能。结果表明:复合纤维的热定型温度和冷却降温速率对其杨氏模量、拉伸强度和断裂伸长率均有影响,经过热定型处理,复合纤维内部MWCNTs的取向程度明显提高。280℃热定型、1.5℃/min冷却纤维的拉伸强度达384MPa,杨氏模量为0.62GPa,断裂伸长率28%,拉伸强度和杨氏模量分别较130℃热定型纤维提高了147%和19%,获得了优化复合纤维性能的最佳工艺条件。   相似文献   

3.
采用熔融共混方法制备了二醋酸纤维素(CA)/三醋酸甘油酯(GT)/滑石粉(Talc)(CA/GT/Talc)复合材料。研究了滑石粉的粒径、表面处理工艺和添加量对复合材料力学性能、耐热性能、转矩流变性能及微观结构的影响。结果表明,滑石粉的加入有效改善了复合材料的力学性能。并且滑石粉的粒径越小越有利于复合体系的力学性能的提高。5000目滑石粉经过表面处理后对复合体系的力学性能效果更好。复合材料的拉伸强度、断裂伸长率及冲击强度随着滑石粉用量的增加呈先上升后下降的趋势,在5000目改性滑石粉用量为2%(wt,质量分数)条件下,制得的CA/GT/Talc复合材料与未添加滑石粉的CA/GT体系相比,拉伸强度从62.00MPa提高至81.63MPa,断裂伸长率从13.8%增加至52.0%,缺口冲击强度为17.05kJ/m~2,增加约4倍。  相似文献   

4.
植物纤维增强PS木塑复合材料的性能研究   总被引:2,自引:1,他引:1  
以木纤维、竹纤维和聚苯乙烯为主要原料,加入偶联剂、润滑剂、增塑剂等加工助剂,经挤出注塑制备聚苯乙烯/木纤维复合材料。研究了植物纤维种类和添加质量分数、偶联剂KH-550添加质量分数对PS木塑复合材料力学性能的影响。结果表明:木纤维和偶联剂的加入都使复合材料的力学性能呈先增大后减小的趋势。当木纤维添加质量分数为25%,偶联剂KH-550添加质量为木纤维添加质量的1.5%时,复合材料具有最大的拉伸强度、弯曲强度和断裂伸长率,分别为30.2MPa,86MPa和8.74%,缺口冲击强度随木纤维添加质量分数的增加而减小。木纤维和竹纤维填充的两种复合材料的拉伸强度、弯曲强度和冲击强度相差不大。  相似文献   

5.
改性炭纤维增强聚四氟乙烯复合材料的制备   总被引:1,自引:0,他引:1  
研究了不同处理条件对复合材料拉伸、摩擦性能的影响,并对拉伸断口及磨损表面形貌进行了分析。结果表明,Ar等离子体处理、聚四氟乙烯乳液包覆的炭纤维能有效增大复合材料界面结合力并提高拉伸强度;当处理时间为9 min时,复合材料的拉伸强度为24.3 MPa,断裂伸长率为340%,磨损率为2.4×10-6mm3/N.m;与纯PTFE相比,拉伸强度和断裂伸长率分别提高了48%和100%,磨损率下降55.6%。  相似文献   

6.
报道了短玻纤增强聚丙烯复合材料中玻纤及注射压力对材料微观结构和力学性能的影响规律。实验结果表明: 随着玻纤含量提高, 复合材料的拉伸强度提高, 而断裂伸长率、冲击强度和熔体流动速率则下降。注射压力提高, 拉伸试样芯层中玻纤的平均取向角下降, 取向度提高, 因而拉伸强度增大, 冲击强度下降。皮层结构中玻纤沿熔体流动方向高度取向。聚丙烯球晶尺寸随玻纤含量增加而变小, 规整度也变差, 至40% 时, 聚丙烯已难以形成规整的球晶结构。  相似文献   

7.
曾广胜  孙刚 《材料保护》2014,(Z1):105-107
以淀粉、线性低密度聚乙烯(LLDPE)和乙烯-丙烯酸共聚物(EAA)为原料,甘油对淀粉进行塑化改性,碳酸氢钠作为发泡剂,辅以其他各种助剂,利用双螺杆挤出机进行熔融挤出发泡以制备复合发泡材料。通过观察发现当碳酸氢钠发泡剂含量为2%时,泡孔分布均匀,大小适宜,发泡效果最佳。重点探究了各原料的含量对复合发泡材料的拉伸强度和断裂伸长率的影响,研究结果表明,随着淀粉含量的增加,材料的拉伸强度逐渐增加,到一定程度的时候开始下降,材料的断裂伸长率则随之不断减小;LLDPE的含量对复合发泡材料的拉伸强度影响较大,EAA含量对断裂伸长率的影响较大;随着甘油含量的增加,增至10%时拉伸强度达到最大,之后开始逐渐下降,断裂伸长率则随则甘油含量的增加而增加。  相似文献   

8.
将改性石墨和表面含有羟基的碳纤维与氯化镁复合,然后负载四氯化钛催化组分,制得复合载体型齐格勒-纳塔催化剂,最后经过乙烯原位聚合,制得含有多维碳材料的聚乙烯(PE)/石墨/碳纤维的新型复合材料。结果表明:改性石墨、碳纤维、氯化镁复合作为催化剂的载体,能够制得高活性的乙烯聚合催化剂。石墨、碳纤维和氯化镁的复合载体型催化剂制得的PE/石墨/碳纤维的新型复合材料力学性能较好,拉伸强度达到38.5MPa,断裂伸长率达到560%,冲击强度达到107kJ/m~2,分别比纯PE提高45.28%、28.74%和16.30%。  相似文献   

9.
将煤粉与PVC塑料混炼制得煤粉/PVC复合材料,研究了煤粉含量和分布状态对PVC材料力学性能的影响。结果表明,煤粉(平均粒径34.5μm)能够均匀地分布于PVC塑料中;当煤粉含量达到7%时,所得复合材料的综合力学性能最佳,其中拉伸强度为66MPa,弯曲强度为68MPa,断裂伸长率为84%,冲击强度可达16.46kJ/m2,邵氏硬度为87.16。煤粉之所以能够增强PVC材料的力学性能,主要是由于均匀分布的煤粉承担了应力在复合材料中的传递。  相似文献   

10.
LDPE-Ni/多晶铁纤维电磁屏蔽包装材料研究   总被引:1,自引:0,他引:1  
为制备一种性能优良,使用方便的电磁屏蔽包装材料,用多晶铁纤维和镍粉作为导电填料,填加到LDPE中,制备成了LDPE-Ni/多晶铁纤维电磁屏蔽材料.研究发现,该材料的屏蔽效能值为20dB;"渗滤阈值"为20%~25%;由于多晶铁纤维的复合磁损耗机理,材料的具有一定的吸波功能;当多晶铁纤维和镍粉的含量为18%时,复合材料达到最大拉伸强度12.5MPa,而其断裂伸长率呈下降趋势.  相似文献   

11.
曾广胜  孙刚 《材料保护》2014,(Z1):102-104
在以淀粉和乙烯-醋酸乙烯酯(EVA)为主料制备复合发泡材料的过程中,原料中各种化学助剂对复合发泡材料的力学性能影响显著。重点研究了发泡剂(NaHCO3)、增塑剂(甘油)、交联剂(DCP)3种化学助剂的用量对淀粉/EVA复合发泡材料拉伸强度和断裂伸长率的影响,结果表明:NaHCO3存在一优化值,使得材料拉伸强度达到最小值,同时断裂伸长率达到最大值;复合发泡材料的拉伸强度随着甘油含量的增加而逐渐降低,断裂伸长率则呈现相反的趋势;当DCP含量在0.6%~0.9%时,拉伸强度和断裂伸长率都达到最大值。  相似文献   

12.
淀粉/聚乳酸挤出片材的制备及性能   总被引:1,自引:0,他引:1  
采用挤出工艺制备了淀粉/聚乳酸复合片材。通过拉伸强度、断裂伸长率并结合断面形貌研究了淀粉结构、淀粉用量、硅烷偶联剂(KH-550)及甘油增塑剂的用量对挤出淀粉/聚乳酸复合片材性能的影响。结果表明,采用接枝甲基丙烯酸甲酯的改性淀粉作为填充剂,并添加适量KH-550硅烷偶联剂和甘油增塑剂及采用造粒后共挤等工艺可有效改善淀粉/聚乳酸复合片材的兼容性,提高复合材料拉伸强度和断裂伸长率,当改性淀粉含量为20份时样品的拉伸强度和断裂伸长率最大,分别为35.3 MPa和37%。  相似文献   

13.
石墨烯微片对尼龙6的改性研究   总被引:1,自引:0,他引:1  
张灵英  陈国华 《材料导报》2011,25(14):85-88,92
采用共混法制备尼龙6/石墨烯微片(GNPs)复合材料,研究了其导电性能、摩擦磨损性能及力学性能,并利用扫描电镜观察分析了材料磨损表面形貌,同时将其结果与炭黑(CB)体系进行了比较。结果表明,PA6/GPNs的渗滤阀值为15%(质量分数,下同),远低于PA6/CB的30%;GNPs的加入降低了材料的摩擦系数和磨损率,并在其含量为10%时达到最佳,分别降低30%和50%;提高了材料的拉伸强度、断裂伸长率、硬度,但冲击强度下降。CB的加入提高了材料的耐磨性、硬度,但摩擦性能、拉伸强度、断裂伸长率和冲击强度均下降。  相似文献   

14.
采用氧化石墨烯还原法制备了石墨烯(GR),同时采用混酸酸化法处理多壁碳纳米管(MWCNTs),以1%(wt,质量分数,下同)的GR和不同含量的酸化MWCNTs作为填料,通过超声搅拌分散-原位聚合法制得抗静电碳系/聚酰亚胺(GR-MWCNTs/PI)复合薄膜,并对复合薄膜的抗静电性能、热稳定性和力学性能进行表征。结果表明,2种碳系材料的添加可明显提高薄膜的导电性、机械性能和抗静电的效果,导电填料的添加对薄膜的热稳定性影响不大,在GR含量为1%,MWCNTs含量为2%时,在560℃时失重率约35%,电阻率为4.44×107Ω·cm,拉伸强度达到88.0MPa,断裂伸长率达到16.23%,拉伸强度和断裂伸长率分别比纯聚酰亚胺提高了122.4%和128.6%。  相似文献   

15.
采用静电纺丝技术制备了氧化石墨烯(GO)不同含量的聚酰亚胺/氧化石墨烯(PI/GO)复合纳米纤维膜,并研究其结构、表面润湿性、热氧化特性、力学性能和过滤性能。结果表明,添加GO有利于纳米纤维的直径分布趋于均匀,在GO用量为0.5%(wt,质量分数)条件下,PI/GO复合纳米纤维膜平均纤维直径最小为(231±36)nm,孔隙率高达89.61%,拉伸强度为14.43MPa,杨氏模量为1.36GPa,断裂伸长率为10.84%,热氧化稳定性较纯PI纳米纤维膜提高了15℃,过滤效率最高达到96.5%,较纯PI纳米纤维膜提高了8%。添加GO能有效提高PI/GO复合纳米纤维膜的疏水性、力学性能及热氧化稳定性。  相似文献   

16.
李仲  英哲  刘敏  成会明 《新型炭材料》2005,20(2):108-114
采用传统的熔融纺丝技术大量制备了定向性良好的纳米碳管/聚丙烯复合纤维。扫描电镜观察证实了纳米碳管在纤维里的定向性以及分散性都得到了较大的改善。通过拉伸实验测试了纳米碳管/聚丙烯复合纤维的力学性能,采用weibull统计分析发现纳米碳管的添加显著提高了复合纤维的拉伸强度,当添加纳米碳管的质量分数达到3%时,纤维强度最高,达到61MPa,超过聚丙烯纤维强度120%。复合纤维拉伸断口的形貌特征也证实了纳米碳管添加对复合纤维拉伸性能影响存在临界现象。  相似文献   

17.
聚丙烯是一种热塑性塑料,比重轻,成品表面硬度大,弹性高,耐热性、化学稳定性、绝缘性良好。产品的加工适应性很强,广泛应用于注塑、挤出扁丝、吹膜、喷丝、改性工程塑料等工业和民用塑料制品加工领域。日常应用非常广泛,不同的添加剂对其力学性能有较大的影响,本文着重分析了成核剂对聚丙烯力学性能的影响,结果表明:a成核剂的加入使聚丙烯结晶度增大刚性增加,强度总体下降趋势,β成核剂的加入使聚丙烯拉伸强度和拉伸模量下降,韧性增大,在β成核剂质量分数为0.57%时,简支梁缺口冲击强度和断裂伸长率达到最大值,皆为聚丙烯的两倍多。  相似文献   

18.
采用熔融共混纺丝工艺制备多壁碳纳米管(MWCNTs)质量分数分别为0.1%和0.5%的MWCNTs/PEEK(聚醚醚酮)复合纤维,研究了紧张热定型过程中热定型温度和降温速率对复合纤维结构和性能的影响。采用TEM、SEM、DSC、DMA、XRD和单纤维电子强力仪研究了复合纤维的形貌、结构和性能。结果表明:复合纤维的热定型温度和冷却降温速率对其杨氏模量、拉伸强度和断裂伸长率均有影响,经过热定型处理,复合纤维内部MWCNTs的取向程度明显提高。280℃热定型、1.5℃/min冷却纤维的拉伸强度达384MPa,杨氏模量为0.62GPa,断裂伸长率28%,拉伸强度和杨氏模量分别较130℃热定型纤维提高了147%和19%,获得了优化复合纤维性能的最佳工艺条件。  相似文献   

19.
以聚乙二醇为增塑剂,采用熔融纺丝-拉伸法制备了具有海绵状孔结构的二醋酸纤维素(CA)中空纤维均质膜。通过场发射扫面电子显微镜、纯水通量、泡点孔径、孔隙率及力学性能测试讨论了成孔剂含量和拉伸条件对CA中空纤维膜结构和性能的影响。结果表明,随拉伸倍数和成孔剂含量提高,膜内外表面孔径均增大,孔隙率提高,通透性改善。随成孔剂含量提高,中空纤维膜断裂强度和断裂伸长率均降低;随拉伸倍数提高,中空纤维膜断裂强度提高而断裂伸长率降低。当成孔剂含量为55%,拉伸倍数为2.25时,所得膜性能较好,膜纯水通量为186.44 L/(m2·h),断裂强度为5.47MPa,断裂伸长率为5.30%。  相似文献   

20.
通过熔融缩聚法制备了具有良好成膜性的聚乳酸-聚乙二醇共聚物(PLEG),并采用低能电子束辐射改性PLEG薄膜,研究了辐射剂量对其拉伸性能和断裂伸长率的影响。结果表明,当加入3%的三聚氰酸三烯丙酯(敏化剂TAC),以80 kGy的剂量辐射后,5#和6#PLEG薄膜的综合力学性能达到最佳,凝胶率分别为54.3%和73.9%,拉伸强度为12.3 MPa和20 MPa,断裂伸长率为283%和29%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号