首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
二氧化铪基新型铁电薄膜器件等研究提出了在低衬底温度下制备高导电性和低表面粗糙度纳米超薄TiN电极薄膜的迫切需求。利用直流反应磁控溅射方法在单晶硅基片上制备TiN薄膜,衬底温度范围从室温~350℃,以XPS、XRD、AFM以及XRR等为主要手段对薄膜样品的成分、物相、表面粗糙度以及厚度和密度等进行了表征分析。结果表明在350℃的较低衬底温度下,通过减少溅射沉积时间可获得厚度30nm的高导电性TiN电极薄膜。  相似文献   

2.
采用陶瓷靶直流磁控溅射,以玻璃为基底制备2.5wt%Nb掺杂TiO2薄膜,控制薄膜厚度在300~350 nm,研究了不同基底温度下所制得薄膜的结构、形貌和光学特性.XRD分析表明,基底温度为150℃、250℃和350℃时,薄膜分别为非晶态、锐钛矿(101)和金红石相(110)结构.基底温度250℃时,锐钛矿相薄膜的晶粒尺寸最大,约为32 nm.薄膜表面形貌的SEM分析显示,薄膜粗糙度和致密度随基底温度升高得到改善.薄膜的平均可见光透过率在基底温度为250℃以内约为70%,随基底温度升高至350℃,平均透过率下降为59%,金红石相的存在不利于可见光透过.Nb掺杂TiO2薄膜的光学带宽在3.68~3.78 eV之间变化.基底温度为250℃时,锐钛矿相薄膜的禁带宽度最大,为3.78 eV.  相似文献   

3.
纳米TiO2薄膜的制备与表面形貌研究   总被引:3,自引:2,他引:1  
研究退火温度对薄膜相结构、表面化学组成及形貌的影响。采用射频磁控溅射法在单晶硅片上淀积TiO2薄膜,通过X射线衍射(XRD)、原子力显微镜(AFM)和X光电子能谱(XPS)对其进行表征。结果表明,室温制备400℃以下退火的TiO2薄膜为无定形结构,400℃以上退火的TiO2薄膜出现锐钛矿相,600℃以上退火的TiO2薄膜开始出现金红石相,退火温度在1000℃以上时样品已经完全转变为金红石相;随着退火温度的升高,晶粒尺寸和表面粗糙度逐渐增大,但是当退火温度为1000℃时反而有所减小,晶粒尺寸和表面粗糙度在退火温度为1000℃时发生的这一突变现象,是由该退火温度下的相变导致。  相似文献   

4.
《真空》2019,(4)
为研究N_2压强以及流量在磁控溅射中对TiN薄膜生长的影响,通过改变N_2气压以及流量使用射频磁控溅射设备在基片温度为300℃,时长2h下生长TiN薄膜。采用电子扫描显微镜(SEM)表征薄膜形貌,获得不同的TiN薄膜微观图像。通过改变工艺参数,可以制备具有不同微观形貌的TiN薄膜。  相似文献   

5.
采用脉冲激光沉积技术,在Si(100)基片上制备了高致密的氧化铱(IrO2)薄膜,研究了不同沉积温度对薄膜结构的影响。利用X射线衍射(XRD)、拉曼光谱、扫描电镜(SEM)和原子力显微镜(AFM)对制备的IrO2薄膜进行了表征。结果表明:在20Pa氧分压,250℃~500℃范围内,得到的薄膜为多晶的IrO2物相,其晶粒尺寸和粗糙度随着沉积温度的升高而增加;所得到的IrO2薄膜表面粗糙度低,厚度均匀,与基片结合良好。  相似文献   

6.
由于环境友好性、高的地球丰度和稳定的物理化学性质,三氧化钨在光电响应、光催化领域应用潜力巨大,受到了人们的广泛关注.薄膜形态的光催化材料能够避免粉体材料的团聚问题,并且在转移、回收再利用方面优势明显,因此制备用于光催化的三氧化钨薄膜是当前的研究前沿.本文通过磁控溅射在石英玻璃基底上沉积三氧化钨薄膜,研究了不同基底温度对薄膜结构和形貌的影响.采用X射线衍射、X射线光电子能谱、场发射扫描电镜、紫外可见吸收光谱、电化学工作站、光催化自组装平台对薄膜的成分形貌、光电化学性能、光催化活性进行表征.测试结果表明:基底温度为500℃时制备的单斜相三氧化钨薄膜具有较好的结晶性和更少缺陷,在500℃的基底温度下,新出现的(002)晶面取向的晶粒导致薄膜表面粗糙度和表面能增加,提升了光生电子空穴分离效率.光降解实验进一步证实此条件下制备的样品表现出最佳的光降解效率.可见,基底温度对磁控溅射制备的三氧化钨薄膜的光电化学性能有明显的调控作用.  相似文献   

7.
采用反应磁控溅射法在氮气分压0.5Pa、基底温度100℃条件下,在玻璃基底上分别制备了氮化铜薄膜和铁掺杂氮化铜薄膜.XRD显示氮化铜薄膜择优(111)晶面生长,铁掺杂使氮化铜薄膜的结晶程度减弱.AFM显示铁掺杂使氮化铜薄膜粗糙度增加.铁掺杂不同程度地提高了氮化铜薄膜的沉积速率和电阻率.  相似文献   

8.
用直流磁控溅射方法,在氮气分压为0.5Pa、不同的基底温度下,于玻璃基底上制备了Cu3N薄膜。当基底温度为100℃及以下时,温度越高薄膜的结晶程度越好。当基底温度在100℃以上时,随着基底温度的升高,薄膜的结晶程度逐渐减弱,200℃时结晶已很弱,300℃时已完全不能形成Cu3N晶体。薄膜的电阻率随基底温度的变化不大,薄膜的沉积速率随基底温度的升高在18~30nm/min之间近似地线性增大,薄膜的显微硬度随基底温度的升高而略有降低。对基底温度为室温和100℃下制备的氮化铜薄膜进行不同温度下的真空退火,研究了它们的热稳定性。XRD测试表明,薄膜在200℃时开始出现分解,350℃时完全分解。比较在基底温度为室温和100℃下制备的样品,发现室温下制备的氮化铜薄膜比100℃下制备的氮化铜薄膜稳定。  相似文献   

9.
利用磁控共溅射方法采用不同的溅射工艺在单晶硅基片沉积制备了Al-Cu-Fe薄膜.运用原子力显微镜镜(AFM)分析了Al-Cu-Fe薄膜的表面形貌、表面粗糙度和晶粒尺寸.结果表明:随着溅射气压的减小,薄膜表面粗糙度和晶粒尺寸均有所减小.当基底温度升高至450℃时,Al-Cu-Fe薄膜的粗糙度和晶粒尺寸明显增加.溅射时间的延长导致了薄膜的表面粗糙度下降和晶粒尺寸的长大.增加溅射功率会使薄膜表面粗糙度有所增加.  相似文献   

10.
利用磁控共溅射方法采用不同的溅射工艺在单晶硅基片沉积制备了Al-Cu-Fe薄膜.运用原子力显微镜镜(AFM)分析了Al-Cu-Fe薄膜的表面形貌、表面粗糙度和晶粒尺寸.结果表明:随着溅射气压的减小,薄膜表面粗糙度和晶粒尺寸均有所减小.当基底温度升高至450℃时,Al-Cu-Fe薄膜的粗糙度和晶粒尺寸明显增加.溅射时间的延长导致了薄膜的表面粗糙度下降和晶粒尺寸的长大.增加溅射功率会使薄膜表面粗糙度有所增加.  相似文献   

11.
磁控溅射系统在恒定Ar气压和Ar气流流量下,使用不同射频溅射功率在Si(100)衬底上分别沉积Ca薄膜;随后,800℃真空退火1 h.立方相的Ca2Si薄膜首次、单独、直接生长在Si(100)衬底上.实验结果指出,在多相共生的Ca-Si化合物中,沉积Ca薄膜时的射频溅射功率影响了立方相Ca2Si薄膜的质量;最优化的溅射功率是85 W.另外,退火温度为800℃时,有利于单一相Ca2Si的独立生长.并且,退火时间也是关键因素.  相似文献   

12.
磁控溅射系统在恒定Ar气压和Ar气流流量下,使用不同射频溅射功率在Si(100)衬底上分别沉积Ca薄膜;随后,800℃真空退火1 h.立方相的Ca2Si薄膜首次、单独、直接生长在Si(100)衬底上.实验结果指出,在多相共生的Ca-Si化合物中,沉积Ca薄膜时的射频溅射功率影响了立方相Ca2Si薄膜的质量;最优化的溅射功率是85 W.另外,退火温度为800℃时,有利于单一相Ca2Si的独立生长.并且,退火时间也是关键因素.  相似文献   

13.
TiN/VCN多层膜的力学性能及摩擦磨损性能研究   总被引:1,自引:0,他引:1  
采用多靶磁控溅射技术, 制备了TiN、VCN单层膜及调制比为1:1的系列调制周期的TiN/VCN多层膜。利用X射线衍射仪、纳米压痕仪、高温摩擦磨损测试仪和扫描电子显微镜研究了各种薄膜的微结构、力学性能及室温和高温摩擦磨损性能。研究表明: TiN/VCN多层膜以δ-NaCl面心立方结构为主; TiN/VCN多层膜的最大硬度值为28.71 GPa, 约为按混合法则计算所得理论硬度值的1.23倍, 并据此分析了TiN/VCN多层膜的致硬机理; TiN/VCN多层膜在室温下摩擦系数与TiN单层膜摩擦系数相近, 但当环境温度为700℃时, 摩擦系数约0.4, 较TiN单层膜(0.52)低。TiN/VCN多层膜室温和高温下的磨损率相比TiN单层膜减小了约3×10-14 m3/(N·m)。从晶体化学和热测量方法角度讨论了TiN/VCN多层膜的Magnéli相V2O5的润滑机制。  相似文献   

14.
采用反应射频磁控溅射方法,在玻璃基底上成功制备出了氮化铜(Cu3N)薄膜,并研究了溅射参数对Cu3N薄膜的结构和性能的影响,结果显示,随着溅射功率和氮气分压的增加,氮化铜薄膜的择优取向由(111)方向向(100)方向改变。随着基底温度从70℃增加到200℃,薄膜从Cu3N相变为cu相。紫外可见光谱、四探针电阻仪等测试表明,当溅射功率从80W逐渐增加到120W时,薄膜的光学能隙从1.85eV减小到1.41eV,电阻率从1.45× 10^2Ω·cm增加到2.99× 10^3Ω·cm。  相似文献   

15.
首先在低温下制备了粒径小于10nm的ZnO纳米晶,然后采用旋口法制备了ZnO纳米晶薄膜,XRD分析ZnO晶相是纤锌矿结构;SEN与AFM表明,纳米晶薄膜在300℃退火后薄膜的厚度明显地减小到130nm(未退火200nm),粒径明显增大,表面粗糙度减少到3.27nm(未退火4.89nm);紫外-可见吸收和透射比光谱表明,随着退火温度的增加,吸收边发生了红移,吸收肩更明显,薄膜具有高的透射率(75—85%),随着温度增加薄膜方阻增大,300℃以下退火方阻增加很小(小于8.5Ω/sq),400℃以上退火方阻大幅增加(大于21.1n/sq),假定存在最优退火温度点(300℃)。  相似文献   

16.
采用直流反应磁控溅射法,在Si(111)基底上制备氮化钛(TiNx)薄膜。研究了溅射沉积过程中腔体气压对TiNx薄膜结构及性能的影响。研究发现:在保持其它工艺参数不变的情况下,改变溅射气压,沉积的TiNx薄膜主要成分是立方相TiN,薄膜的结晶显示出明显的(200)择优取向。在腔体气压为0.5Pa时出现(200)衍射峰最强、择优取向最明显。随着腔体气压的增加,薄膜厚度变小,而衍射峰则呈减弱的趋势。在腔体气压为0.3Pa时,膜层致密均匀,没有大尺寸缺陷且光洁度好,薄膜的结晶度最好,表面也最光滑。在测试波长范围内对光的平均反射率最大(达85%),可满足光学薄膜质量方面的要求。  相似文献   

17.
TiN/TiCN多层膜的高温抗氧化性研究对于扩大其应用领域具有重要作用,但目前鲜见相关报道。采用多弧离子镀与磁控溅射技术以不同调制周期在304不锈钢表面共沉积TiN/TiCN多层膜。采用XRD、XPS、倒置显微镜及高温氧化试验研究了多层膜的高温抗氧化行为。结果表明:TiN/TiCN多层膜表面光滑平整、均匀致密,薄膜主要为具有Ti-(C,N)键的fcc-TiN结构;随着调制周期的减小,TiN/TiCN多层膜生长取向发生转变,且具有(111)晶面生长织构;随着氧化温度的升高,多层膜的显微硬度逐渐降低,氧化增重速率不断增大,且在700℃之后变化速率较快,薄膜的开始氧化温度约为750℃;随着调制周期的减小,多层膜TiN与TiCN界面层数量增多,促使晶粒细化,提高了其致密性,还隔断了缺陷贯穿薄膜的连续性,显著降低了薄膜的孔隙率,致使O原子扩散困难,增强了薄膜的高温抗氧化性能。  相似文献   

18.
Nanocrystalline TiN thin films were deposited on glass substrate by d.c. magnetron sputtering. The microstructural characteristics of the thin films were characterized by XRD, FE-SEM and AFM. XRD analysis of the thin films, with increasing thickness, showed the (200) preferred orientation up to 1·26 μm thickness and then it transformed into (220) and (200) peaks with further increase in thickness up to 2·83 μm. The variation in preferred orientation was due to the competition between surface energy and strain energy during film growth. The deposited films were found to be very dense nanocrystalline film with less porosity as evident from their FE-SEM and AFM images. The surface roughness of the TiN films has increased slightly with the film thickness as observed from its AFM images. The mechanical properties of TiN films such as hardness and modulus of elasticity (E) were investigated by nanoindentation technique. The hardness of TiN thin film was found to be thickness dependent. The highest hardness value (24 GPa) was observed for the TiN thin films with less positive micro strain.  相似文献   

19.
利用磁控溅射方法制备了一系列超薄Ta(5nm)/Ni81Fe19(20nm)/Ta(3nm)磁性薄膜。着重研究了基片温度、缓冲层厚度对Ni81Fe19薄膜各相异性磁电阻(AMR)及磁性能的影响。利用X射线衍射仪分析了薄膜结构、晶粒取向;用四探针技术测量了薄膜的电阻率和各向异性磁电阻;用FD-SMOKE-A表面磁光克尔效应试验系统测量了薄膜的磁滞回线。结果表明:在基片温度为400℃时制备的Ni81Fe19薄膜具有较大的各向异性磁电阻效应和较低的磁化饱和场,薄膜最大各向异性磁电阻为3.5%,最低磁化饱和场为739.67A/m。基片温度为500℃制备的薄膜,饱和磁化强度Ms值最大。随着缓冲层厚度x的增加,坡莫合金薄膜的AMR值先变大后减小,在x=5nm时达到最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号