首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用化学镀法和粉末冶金的方法制备高致密的W/Cu梯度热沉材料。用场发射扫描电镜观察了材料的组织结构、界面和断口形貌。对材料的力学性能也进行了表征,如抗弯强度和显微硬度。结果表明材料每一层都很致密且组织结构均匀。截面上材料成分呈梯度分布,每层之间没有明显的界面。3层W/Cu梯度热沉材料的相对密度可达99.2%。散热层、过渡层和封接层的显微硬度HV分别是2000、2100和2400 MPa。抗弯实验结果显示封接层和散热层作为承重抗弯表面时的强度分别是428.5和480.7 MPa。  相似文献   

2.
W-Cu梯度热沉材料的致密性和力学性能   总被引:1,自引:0,他引:1  
对采用粒度配比和热压固相烧结方法制各的W-Cu梯度热沉材料的致密性和力学性能进行了研究.结果表明:W-Cu梯度热沉材料各梯度层均达到近全致密的程度,封接层,中间层,散热层的相对密度分别为98.6%,99.1%和99.5%;漏气率的指标满足真空封装的使用要求;随着致密性的增加,封接层和中间层的硬度增加,在相同致密性的条件下,中间层的硬度略高于封接层的硬度:W-Cu梯度热沉材料的抗弯强度明显高于各梯度层的抗弯强度,达到505.8 MPa;封接层、中间层和散热层的抗压强度分别为547.1、619.1和416.0 MPa.  相似文献   

3.
热压烧结制备近全致密W-Cu梯度热沉材料   总被引:5,自引:0,他引:5  
采用粒度配比和热压固相烧结方法制备高致密W-Cu梯度热沉材料,考察烧结温度、压力和保温时间对梯度材料密度和硬度的影响,并对材料的显微组织进行观察。结果表明:采用热压固相烧结和粒度配比法可以制备近全致密的W-Cu梯度热沉材料,各梯度层分界清晰,各层组织致密,成分保持为最初的梯度设计;在烧结温度1060℃、压力85MPa、保温时间3h的工艺条件下,所制备的W-Cu三层梯度热沉材料的封接层、中间层、散热层的相对密度分别达到98.6%、99.1%和99.5%,硬度HRB分别为91,6、95.6和74.4。  相似文献   

4.
MBE方法制备高致密W-Cu梯度功能材料的研究   总被引:1,自引:0,他引:1  
采用多坯料挤压法结合粒度配比、热压固相烧结法制备了3层W-Cu梯度功能材料,并对微观组织及性能进行了分析.结果表明:多坯料挤压法制备的3层坯体,层与层之间结合紧密,各层形状规整、厚度均匀;热压固相烧结后可得到近全致密的W-Cu梯度材料,层与层之间的界面位置清晰,组织结构致密,成分分布保持为最初的梯度设计结果,各层中Cu相形成了理想的网络结构,W颗粒镶嵌在网状结构中;封接层、中间层、散热层的相对密度分别达到98.3%、99.3%和99.9%,硬度分别为91.3、93.6和74.0 HRB.在室温~100 ℃范围内,封接层的热膨胀系数为6.97×10-6/℃,可实现与BeO基板材料良好的热匹配.  相似文献   

5.
采用真空热压烧结工艺制备W(50)/Cu-Al2O3复合材料,观察了其显微组织,测试了其致密度、硬度、抗弯强度和导电率。结果表明:W(50)/Cu-Al2O3复合材料组织致密;致密度和硬度优于Cu-50%W,致密度可达99.8%,显微硬度达135 HV。而导电率为46%IACS,略低于W-50%Cu复合材料。抗弯强度为291.3 MPa,弥散铜钨合金室温弯曲断裂主要以弥散Cu相的撕裂为主,伴随有W-Cu界面的分离和部分W晶粒的解理断裂。  相似文献   

6.
采用热压法制备添加0~6%铜含量(质量分数)的Al-50%Sip(质量分数)复合材料,研究Cu含量对复合材料显微组织和力学性能的影响,对混合粉末进行差示扫描量热分析(DSC),采用扫描电镜(SEM)和X射线衍射仪(XRD)研究试样的显微组织和相组成,并测试复合材料的拉伸和抗弯性能。结果表明:单质Cu粉的加入降低混合粉末的熔点,有利于在相对较低的温度下实现材料的致密化。当Cu含量低于2%时,材料的组织均匀致密,Si颗粒未出现明显粗化;但当Cu含量高于2%时,组织均匀性随Cu含量的增加而逐渐下降;随着Cu含量增加,复合材料的抗拉强度和抗弯强度呈先上升后下降的趋势;在Cu含量为2%时,复合材料的抗拉强度和抗弯强度分别达到最大值(268和423 MPa),较未添加Cu的复合材料分别提高66.5%和46.9%,材料的弹性模量和布氏硬度随Cu含量的增加逐渐上升。  相似文献   

7.
采用浸镀的方法在纯铝基体上浸镀镍基镀层,然后在450~550℃温度范围内用扩散复合的方法制备Al/Cu双金属材料。用扫描电子显微镜(SEM)和X射线衍射仪(XRD)分别对Al/Cu结合体的界面显微组织以及断裂表面进行表征。用拉伸剪切测试及显微硬度测试对Al/Cu双金属材料的力学性能进行测量。结果表明,Ni中间层可以有效地消除Al—Cu金属间化合物的形成。Al/Ni界面由Al_3Ni和Al_3Ni_2两相组成,而在Ni/Cu界面处则是Ni—Cu固溶体。Ni中间层的加入提高了复层材料的拉伸剪切强度。在500℃制备的添加Ni中间层的试样表现出最大的拉伸剪切值,为34.7 MPa。  相似文献   

8.
采用放电等离子体烧结(SPS)技术,在1050℃下成功制备出了5层W/Fe功能梯度材料,并通过钎焊与纯W结合。采用光学显微镜、扫描电镜和显微硬度计等研究了W/Fe功能梯度材料的表面形貌、断口形貌及硬度。结果表明:所制备的W/Fe功能梯度材料的成分和显微硬度符合梯度变化趋势;纯W层与钎料层间界面平整无孔洞及裂纹,只有少量W扩散至钎料层,而80W20Fe层与钎料层间的界面出现较多宏观孔洞,并出现相互扩散行为。随着W含量的增加,W/Fe功能梯度材料的断裂行为从韧性断裂(316L钢层)到部分韧性断裂(W含量20%),再到完全脆性断裂(纯W层)。  相似文献   

9.
利用铸渗复合-热处理工艺在铁基体表面原位制备了致密碳化钛陶瓷增强复合材料,分别研究了复合材料的物相组成、微观组织及细观组织、显微硬度、断裂韧性. 结果表明,钛板中的钛原子和石墨片中溶解析出的碳原子扩散到冶金结合面原位生成了碳化钛致密陶瓷层,且致密陶瓷层与钛板、致密陶瓷层与基体之间结合良好,界面干净. 致密陶瓷层显微硬度平均值为3 027.08 HV0.1,远远大于基体硬度和残余钛板硬度,试样纵截面致密陶瓷层在20 N载荷下在压痕顶端萌生,扩展了裂纹,其断裂韧性为4.5~14.2 MPa·m1/2,远高于一般的陶瓷材料.  相似文献   

10.
采用TIG+MIG+MAG焊接工艺对TA1/X65爆炸冶金复合板(复层Ti厚2 mm,基层X65管线钢厚14 mm)试件进行了以V/Cu作为过渡填充金属的板-板对接焊实验.利用OM,XRD,EDS面扫描,显微硬度测试和拉伸实验,研究了焊缝区组织特征、界面元素分布、主要物相、显微硬度分布及焊缝力学性能.结果表明,圆弧状"U"型坡口设计有利于过渡层Cu的MIG焊接,在Cu-钢界面不会引起应力集中而萌生裂纹.熔敷金属Ti,V,Cu和Fe有明显分区,扩散互融现象不明显,各区域间由固溶体相过渡连接,Ti/V过渡界面组织结构为钛基固溶体,V/Cu过渡界面组织结构为钒基固溶体,Cu/Fe过渡界面组织结构为铜基固溶体.焊缝硬度较高区域出现在Ti/V过渡界面和V/Cu过渡界面处,硬度达326和336 HV10,对过渡界面层塑韧性有一定影响.焊缝抗拉强度可达546 MPa,主要由碳钢层贡献.  相似文献   

11.
采用干粉铺叠法和热压工艺制备了非对称HA/316L不锈钢功能梯度生物材料,并测定了其相对密度和抗弯强度,采用X射线衍射仪、扫描电镜、金相显微分析技术等对材料进行了物相和显微组织分析.结果表明:非对称HA-316L不锈钢生物FGM在宏观上呈现明显的梯度分布,微观上则各成分分布连续、均匀,各梯度层之间没有明显的宏观界面,界面结合紧密;随着316L不锈钢含量的增大,材料的相对密度增加,抗弯强度提高,平均抗弯强度达450 MPa左右,体现出FGM的热应力缓和行为;此外,在生物FGM中,HA和316L不锈钢两相在热压过程中发生了不同程度的固溶,表明HA和316L不锈钢能够形成好的结合.  相似文献   

12.
采用Ag_(70)-Cu_(28)-Ti_2活性焊料在真空条件下对AlN陶瓷和Mo-Ni-Cu合金进行活性封焊.分析焊区的显微组织形态、相组成,测定焊区力学性能和气密性.结果表明:在焊料层与合金的界面处Cu的含量相对较高,而在AlN陶瓷与焊料层的界面处形成了厚度为1~2 μm的富Ti层;经XRD分析发现,AlN陶瓷与焊料层的界面上有TiN存在,表明在AlN陶瓷与焊料层的界面处形成了化学键合.焊接后试样的气密性达到1.0×10~(-11) Pa·m~3/s,抗弯强度σ_b=78.55 MPa,剪切强度σ_τ=189.58 MPa.  相似文献   

13.
Structure of 1-mm tungsten (W) coating on copper (Cu) with the different compliant layers was designed and optimized by means of ANSYS code. Three materials of titanium, nickel-chromium-aluminum alloys, and W/Cu mixtures with a thickness of 0.5 mm were selected as the compliant layers to evaluate their effects on the interface stress between W and Cu, strain, and the surface temperature under the heat load of 5 MW/m2. Application of the compliant layers can obviously alleviate the interface stress concentration compared to the sharp interface. The maximum stress reduction of about 25% was obtained from the W/Cu-compliant layer; however, the surface temperature was increased only by 12 °C. Further investigation on the W/Cu-compliant layer revealed that 0.1-0.2-mm 20-35 vol.% W was the optimum structure for 1-mm W coating, which resulted in the smallest peak stress of 299 MPa and the equivalent plastic strain of 0.01%.  相似文献   

14.
采用基于粉末成形及半固态成形工艺而提出的伪半固态触变模锻成形工艺,成功制备出力学性能良好的40Cu-W合金筒形件,其中在成形温度为1 350 ℃、模锻压力为500 MPa工艺条件下制件的抗弯强度可达1 151 MPa,致密度达到98.38%.制件微观组织致密,分布比较均匀,低熔点的铜相包围在钨颗粒的周围,为制件性能的提高起到了重要作用.  相似文献   

15.
Copper matrix composites have received more attentions as possible candidate for thermal and electrical conductive materials to be used in electrical contact applications. In this study, five-layered Cu/YSZ(yttria-stabilized zirconia) functionally graded material(FGM) and copper matrix composite specimens containing 3 and 5 vol% YSZ particles plus pure Cu specimen were synthesized using powder metallurgy(PM) route and spark plasma sintering(SPS)consolidation process. The microstructural and some physical, mechanical features of all specimens were characterized.Microscopic examinations showed that ultrafine YSZ particles were distributed in the copper matrix almost homogeneously. An appropriate interface was observed at each layer of FGM. The density measurement indicated that the graded structure of the composite could be well densified after the SPS process. The microhardness values of various layers of Cu/YSZ FGM specimen were gradually altered from 56.3(pure copper side) to 75.2 HV(Cu-5 vol% YSZ side). The increase of YSZ content resulted in a decrease in electrical conductivity. Additionally, thermal conductivity of Cu/YSZ FGM specimen [308.0 W/(m K)] was determined to be higher than that of the Cu-5 vol% YSZ composite specimen [260.7 W/(m K)]. Accordingly, it can be concluded that the Cu/YSZ FGM can be a good candidate for the electrical applications, like sliding electrical contacts, where different material characteristics in the same component are required.  相似文献   

16.
1IntroductionTheroledAg/Cucompositecontactsarewidelyusedinindustrialequipmentandhomeappliance.However,thebondingstrengthofco...  相似文献   

17.
通过添加钒/镍复合中间层,在1 050℃/10 MPa/1 h的工艺条件下,对钨/钢异种材料进行真空扩散焊接.采用扫描电镜(SEM)、能谱仪(EDS)、电子探针(EPMA)、纳米压痕、X射线衍射对接头的微观组织、元素分布及显微硬度进行分析和测试;对焊接接头的拉伸性能进行测试,并对拉伸断口的形貌特征,元素分布及物相组成进行分析.结果表明,采用钒/镍复合层可实现钨与钢的可靠焊接;钨/钢焊接接头界面区由钨-钒固溶体层、未反应的钒层、钒-镍界面层、未反应的镍层、镍-铁固溶体层五部分组成,其中钒-镍界面层结构为碳化钒层/钒-镍金属间化合物和碳化钒混合层/钒-镍金属间化合物层;钒/镍界面由于硬脆碳化物与金属间化合物的产生,具有最高的显微硬度,硬度高达9.7 GPa;接头强度达164 MPa,断裂点位于含脆性相碳化钒及钒-镍金属间化合物的钒/镍界面.  相似文献   

18.
何鹏  冯吉才  韩杰才  钱乙余 《焊接》2002,(11):15-18
研究了TiAl/Ti/V/Cu/40Cr钢的扩散连接,结果显示:在TiAl/Ti界面处形成了对接头强度有利的Ti3Al TiAl双相层及Ti固溶体层,而Ti/V/Cu/40Cr界面处未出现金属间化合物及其它脆性相,接头最高拉伸强度可达420MPa,接近TiAl母材。  相似文献   

19.
Three-layered (W–25Cu/W–50Cu/W–75Cu, volume fraction) W/Cu functionally graded material (FGM) was synthesized by spark plasma sintering (SPS) at different temperatures for 5 min under a load of 40 MPa. The influences of different sintering processes on relative density, hardness, thermal conductivity and microstructure at various layers of sintered samples were investigated. The experimental results indicated that the graded structure of the composite could be well densified after the SPS process. The relative density increased with the increment of sintering temperature and it was up to 96.53% as sintered at 1050 °C. In addition, the thermal conductivity reached 140 W/m·K at room temperature and 151 W/m·K at 800 °C, which could be ascribed to the specific structure that W particles enwrapped by net-like Cu. And the Vickers hardness was converted from 4.11 to 4.68 GPa.  相似文献   

20.
运用ANSYS12.0软件对W/Cu梯度材料进行热应力模拟分析,并对结构进行优化设计。结果表明,随着成分分布指数(p)的增加,最大热应力先减小后增大;在p=1.3,热流密度为30 MW/m2时,最大热应力值最小为180 MPa,与非梯度材料相比最大等效热应力降低79%;最优化的梯度层厚度大于3 mm,梯度层数4~6层,钨板的厚度1~3 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号