首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
Wheat germ, a by-product of the milling industry, has interesting nutritional properties. However, it has limited use due to a high risk of rancidity, which could be reduced by using certain thermal treatments such as extrusion. The aim of this study was to investigate how wheat germ extrusion affects the changes induced by its addition to bread dough. For this purpose, different quantities of extruded or raw wheat germ (2.5, 5, 7.5, 10, and 20?g/100?g flour) were added to bread dough. Rheological characteristics of the dough and final quality characteristics of the bread were analysed from both the physical and the sensory points of view. Wheat germ addition increased water absorption and development time but decreased stability after over-kneading, dough tenacity, extensibility, and dough alveographic strength. The addition of extruded wheat dough improved stability and decreased extensibility and strength. Bread made from dough with added wheat germ presented decreased volume, cohesiveness, and elasticity and increased firmness. However, extrusion increased the volume of breads with added wheat germ and improver and decreased firmness. All breads obtained positive acceptability scores in sensory analysis, although wheat germ addition (10?g/100?g flour) slightly decreased texture, appearance, and overall acceptability scores of breads. Germ extrusion therefore improves dough rheology and bread quality and constitutes a suitable treatment to stabilise wheat germ in bread dough.  相似文献   

2.
麦胚对面包质量影响的研究   总被引:4,自引:1,他引:3  
研究了全脂麦胚和脱脂麦胚对面团的流变学特性和面包质量的影响。结果表明,面团的筋力随麦胚量的增加而降低;脱脂麦胚比全脂麦胚的面包质量较好;脱脂麦胚的适宜加量为8%;麦胚能改善面包的皮色、风味和营养价值。  相似文献   

3.
Soybean (full‐fat and defatted) and barley flours were incorporated into wheat flour at 5, 10, 15 and 20% substitution levels. The gluten content, sedimentation value and water absorption capacity of the flour blends and the mixing time of the dough decreased with increase in the level of soybean and barley flour separately and in combinations. Protein and glutelin contents increased significantly on blending of soyflour (full‐fat and defatted) to bread wheat flour. The breads prepared from the blends also varied in their loaf weight, loaf volume and sensory characteristics. The bread volume decreased with increasing amount of non‐wheat flour substitution. The crumb colour changed from creamish white to dull brown and a gradual hardening of crumb texture was observed as the addition of soybean (full‐fat and defatted) and barley flours increased. At the higher levels, the acceptability declined because of the compact texture of the crumb and the strong flavour of the product. The addition of 10% of soyflour (full‐fat and defatted) or 15% of barley flour, full‐fat soy + barley or defatted soy + barley flour to bread flour produced acceptable bread.  相似文献   

4.
BACKGROUND: Waxy wheat, a new kind of genetically back‐crossed wheat, was applied to make whole bread in this study. Dough properties and bread quality of the whole waxy wheat flour, which was milled from 100% whole grains containing bran and germ, were determined. RESULTS: Whole waxy wheat had lower protein and lipid contents but higher dietary fiber content than whole regular wheat flour. Pasting temperature and viscosity of the whole waxy wheat flour were significantly lower than those of the whole regular wheat. However, the white wheat flour milled from wheat grains with 48% recovery had significantly higher peak viscosity than the whole waxy wheat. Bread made from the whole waxy wheat flour was significantly softer than that from the whole regular wheat flour during storage. However, bread made from whole waxy wheat had significantly lower specific volume than that from the white waxy flour because of the high amount of dietary fiber. Addition of cellulase increased paste viscosity, lowered dough mixing properties and reduced the firmness of the bread. The addition of pentosanase also increased paste viscosity, lowered dough mixing properties, improved loaf volume of bread but increased the firmness of breadcrumbs, while the addition of α‐amylase only increased final viscosity of flour and did not affect dough properties and bread qualities of whole waxy wheat flour. CONCLUSION: As a result, waxy wheat shows superior properties for making whole breads. Additional enzymes are also necessary to improve bread quality and nutritive values of whole waxy bread. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
High levels of soy flour added to wheat bread produce negative effects on gluten network formation, dough properties, and on bread final quality. The objective of this study was to assess the influence of three enzymes, transglutaminase (TG), glucose oxidase (GOX), and endoxylanase (XYL), on dough properties and final quality of high-protein breads. The addition of TG and GOX increased the mixing stability and maximum resistance of dough, decreased its extensibility, and produced stronger and more consistent dough samples. XYL incorporation produced opposite results. XYL addition and the lowest GOX dose increased bread volume significantly and decreased initial crumb firmness, while high doses of TG (0.3%) produced detrimental effects on bread volume and crumb firmness. In conclusion, XYL and GOX 0.001% addition improved the final quality of soy-fortified breads, but XYL was the best additive to improve dough properties, bread volume, and quality.  相似文献   

6.
Free amino acids, peptides, and vital wheat gluten were investigated to determine their effect on the mixing and frozen dough baking properties of wheat flour. Addition of 1% cysteine and aspartic acid decreased and glutamic acid, histidine, arginine, and lysine increased the mixing tolerance of flour. Cystine, methionine, tryptophan, and phenylalanine increased but isoleucine, histidine, glycine, arginine, glutamic acid, aspartic acid, and lysine decreased loaf volume of nonfrozen dough breads. However cystine, methionine, tryptophan, and phenylalanine did not increase loaf volume of bread prepared from frozen dough. Vital wheat gluten increased mixing tolerance and bread loaf volume only for the nonfrozen dough. However, wheat gluten hydrolysate, corn, and bonito peptides decreased mixing tolerance after optimum mixing time and were effective in increasing loaf volume for both frozen and nonfrozen dough. As the amount of corn and bonito peptide increased, specific loaf volumes also increased. Addition of 2.5% corn peptide was most effective in increasing loaf volume of frozen dough bread. Crust browning and crumb stickiness increased, whereas crumb softness decreased with addition of peptides. Addition of less than 1% peptide did not adversely affect the aftertaste and off‐flavor of bread. These results suggest that addition of peptides are effective for improving the baking quality of frozen dough, whereas amino acids and gluten have no effect.  相似文献   

7.
M. Siddiq  M. Nasir  M.S. Butt  J.B. Harte 《LWT》2009,42(2):464-470
Maize (Zea mays L.) processing produces large quantities of defatted maize germ (DMG) that is being used mainly for animal feed. The objective of this study was to exploit use of this nutrient-rich by-product in bread by replacing wheat flour at 5-20 g/100 g levels. Breads prepared with wheat-DMG flour blends were analyzed for loaf volume, density, instrumental dough hardness and bread firmness, Hunter color (“L”, “a”, “b”, chroma, and hue angle), and selected sensory attributes. Loaf volumes decreased significantly, from 318.8 ml to 216.3 ml, as the DMG flour supplementation was increased from 0 to 20 g/100 g; a similar effect was observed for bread specific volume. Increase in dough hardness (7.56-71.32 N) was directly related to increase in DMG flour levels. Instrumental firmness values were significantly higher for breads containing DMG flours, 61.58 N in 20 g/100 g DMG bread versus 32.84 N for the control bread, made with wheat flour only. The control bread was lighter in color, as shown by higher “L” values, than those having DMG flour, with chroma and hue angle values significantly higher in treatment breads. In general, no differences were observed for the sensory attributes of crumb color, cells uniformity, aroma, firmness, mouthfeel, and off-flavor in breads with up to 15 g/100 g DMG flour, while the overall acceptability scores showed a mixed pattern. The results of this study demonstrated that acceptable quality bread could be made with DMG flour addition at ≤15 g/100 g.  相似文献   

8.
Hooda S  Jood S 《Die Nahrung》2003,47(4):265-268
The effect of blending of fenugreek (raw, soaked, and germinated) flour (Trigonellafaenum graecum) from 5 to 20% in wheat flour on the rheological and sensory evaluation of bread, biscuit, noodle, and macroni was studied. Farinograph water absorption, dough development time, mixing tolerance index, and dough stability increased significantly with increased amount of fenugreek flour. Incorporation of fenugreek flour in wheat flour increased the protein and fat contents of blends but decreased the gluten contents. Among the supplemented blends, blends containing germinated fenugreek flour had higher protein contents (13.83-16.30%) up to 20%. Overall acceptability scores of bread, biscuit, noodles, and macroni were found highly acceptable up to 15, 10, and 20% levels, respectively.  相似文献   

9.
该文以不同吸水速率的小麦粉为基础,研究在相同的揉混条件下,其面团特性及馒头品质的变化。使用粉质仪将面团稠度达到最高时所用的加水量与消耗的时间的比值定义为吸水速率,测定不同吸水速率小麦粉其粉质特性、湿面筋含量、面筋指数、游离巯基与二硫键含量、面团质构特性、馒头比容与高径比、馒头的质构特性。研究结果表明,当小麦粉吸水速率从0.17 g/s增大到3.87 g/s时,面团的稳定时间及粉质质量指数显著下降。其湿面筋含量从38.81%下降到19.19%,二硫键含量从13.31μmol/g下降到9.05μmol/g。面团的质构特性在发酵0 min时呈先升高后降低趋势、在醒发45 min后整体呈下降趋势。馒头的比容从2.67 mL/g降低到2.27 mL/g、高径比从0.68降低到0.56,其硬度、胶着性、咀嚼性均成下降趋势。整体而言,吸水速率低的小麦粉其面团相对较硬且馒头较为筋道有嚼劲;吸水速率较高的小麦粉其面团硬度稍弱且馒头较为松软。  相似文献   

10.
Pan bread formulations based on raw wheat germ, vital wheat gluten, and enzyme-active soybean flour were optimized with the objective of developing a phytochemical-enriched designer food product with superior nutritional and sensory qualities. The objective texture values (measured as compression force, g) indicated that the test bread with 10% wheat germ addition was comparable (299.9 g) to the control (210.1 g), but the compression force was significantly higher (415.4 g) at 20% wheat germ level. With 0.5% sodium stearoyl-2-lactylate (SSL), 30 ppm potassium bromate and 50 ppm ascorbic acid, the test breads with 10 and 20% wheat germ had compression force values of 313.8 g and 367.7 g, respectively. Comparing the CIE L*a* values, the test bread samples having up to 20% wheat germ were slightly darker in crumb color than the white flour control bread, but were significantly lighter than the whole wheat flour bread. However, the addition of wheat germ increased the yellow color of bread crumb as indicated by the higher b* values of 11.4, 16.4 and 21.4, for control, 10% and 20% wheat germ breads, respectively. The physical texture and objective color measurements can be used in evaluating the quality of a phytochemical-enriched designer food (pan bread). It can be concluded that wheat germ-enriched bread can be prepared by using white flour, 20% raw wheat germ, 0.5% SSL, 30 ppm potassium bromate and 50 ppm ascorbic acid to provide consumers with a functional food.  相似文献   

11.
The effect of blending of fenugreek (raw, soaked, and germinated) flour (Trigonella faenum graecum) from 5 to 20% in wheat flour on the rheological and sensory evaluation of bread, biscuit, noodle, and macroni was studied. Farinograph water absorption, dough development time, mixing tolerance index, and dough stability increased significantly with increased amount of fenugreek flour. Incorporation of fenugreek flour in wheat flour increased the protein and fat contents of blends but decreased the gluten contents. Among the supplemented blends, blends containing germinated fenugreek flour had higher protein contents (13.83–16.30%) up to 20%. Overall acceptability scores of bread, biscuit, noodles, and macroni were found highly acceptable up to 15, 10, and 20% levels, respectively.  相似文献   

12.
Incorporating high level of potato flour into wheat flour enhances nutritional values of bread but induces a series of problems that lead to the decline of the bread quality. To overcome the barrier, wheat gluten and carboxymethylcellulose (CMC) were added into potato–wheat composite flour to improve dough machinability and bread quality. The rheological properties, thermo-mechanical properties and microstructures of dough were investigated. The results showed that the interaction between gluten and CMC mitigated the discontinuity of gluten matrix and gluten protein aggregation caused by the addition of potato flour, which yielded a more branched and compact gluten network. The compact three-dimensional viscoelastic structure induced improvements of gas retention capacity and dough stability, making it mimic the machinability properties of wheat flour dough. Bread qualities were apparently improved with the combined use of 4% gluten and 6% CMC, of which specific volume increased by 42.86%, and simultaneously, hardness reduced by 75.93%.  相似文献   

13.
为了改善全麦中麸皮带来的不利影响,本文尝试向全麦粉中添加双乙酰酒石酸单双甘油酯(DATEM,0~1.0%)改变全麦面团特性同时改善全麦食品品质。利用混合实验仪(Mixolab)、质构仪、动态流变仪、扫描电镜、激光共聚焦等研究了DATEM对全麦面团的混合特性、流变特性、拉伸特性和微观结构及其对全麦馒头比容、质构特性的影响。结果发现,DATEM使得全麦面团形成时间、稳定时间与回生值均升高,峰值粘度降低。DATEM添加增加了面团拉伸强度,弹性模量(G")和黏性模量(G"),但降低了面团延伸性。全麦面团微观结构显示,添加DATEM后面团内部断裂减少,结构均匀连续,面筋结构得到明显改善。DATEM使得全麦馒头硬度显著降低(p<0.05),由1546.70 g(对照)降低到680.56 g(DATEM 1.0%),当添加量为0.4%时,全麦馒头的比容比对照增加了1.2倍。  相似文献   

14.
以馒头专用粉及青麦粉制作青麦馒头,利用激光共聚焦显微镜、黏度仪、红外光谱仪等分析仪器进行测定,探究不同青麦粉添加量(0%、5%、10%、15%、20%)对面团粉质特性、糊化特性、微观结构及面筋蛋白二级结构的影响。结果表明,随着青麦粉添加量的增加,混合粉湿面筋含量、面筋指数减少;糊化温度、峰值黏度降低,面团糊化时间缩短,面团稳定时间从6.18 min降至4.92 min、粉质质量指数减小了18,面筋强度变弱,承受力变差;面团拉伸面积、延伸度和最大拉伸阻力在135 min时显著减小;面筋网络结构逐渐出现孔洞,分布不均匀;面团面筋蛋白各吸收峰都发生了偏移,β-折叠和α-螺旋结构含量增加;综上所述,青麦粉的加入改变了面团特性和面筋蛋白结构,这些变化可能是导致青麦馒头品质下降的主要原因。  相似文献   

15.
目的 探讨不同全麦粉替代率对冷冻馒头品质影响的变化规律.方法 采用不同比例全麦粉(0、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%)替代小麦粉,测定了混合粉的湿面筋含量和流变学特性,对比新鲜馒头,评价全麦粉替代率对冷冻馒头外观、质构和感官品质的影响.结果 随全麦粉替代率增加,面团湿面...  相似文献   

16.
该实验以甘薯-小麦混粉为原料,探究甘薯生全粉添加量对混粉特性、混粉面团特性以及甘薯生全粉馒头综合品质影响的研究。结果表明,甘薯生全粉中主要成分为淀粉,含量约为64.60%;随着混粉中甘薯生全粉含量的增加,混粉的持水性从1.16 g/g增加至1.70 g/g,持油性呈先增大后减小的变化趋势。随着甘薯生全粉添加量增大,混粉粉质特性变差,面团加工品质降低;随着混粉面团中甘薯生全粉含量的增加,面团的TO、TP、TC、硬度逐渐增大,弹性逐渐减小;甘薯生全粉添加量在20%以内时,甘薯馒头感官评分大于70,馒头的质构、比容和白度仍在可接受范围内。综上所述,当甘薯生全粉添加量小于10%时,混合面团的加工特性和馒头品质较优;当甘薯生全粉添加量小于20wt%时,混合面团的加工特性和馒头品质在可接受范围内。  相似文献   

17.
本研究旨在探讨葡萄糖氧化酶和谷氨酰胺转氨酶对发酵麦麸面团加工品质的改良效果及改良机制,为改善全麦发酵食品食用品质提供应用参考。在全麦粉中分别添加1.0、3.0和6.0 U/g的葡萄糖氧化酶或谷氨酰胺转氨酶,分析测定了全麦粉粉质特性、发酵面团质构特性以及面筋的持水率、蛋白质组成和游离巯基含量的变化情况。研究结果表明:两种酶制剂的添加对全麦粉粉质特性有显著改善作用(p<0.05),面团稳定时间延长,弱化度减小;随酶制剂添加量的增加,发酵面团的弹性和凝聚性均显著增加,面筋蛋白中谷蛋白大聚合体(GMP)含量显著升高,游离巯基的含量显著减少(p<0.05),但高添加量的谷氨酰胺转氨酶(6.0 U/g)引起面筋蛋白持水率下降。谷氨酰胺转氨酶对麦麸面团品质的改良效果显著优于葡萄糖氧化酶(p<0.05),其适宜添加量为3.0 U/g,可使麦麸面团的稳定时间由5.3 min延长至9.3 min。  相似文献   

18.
In this research, the effects of different materials such as defatted Cephalaria syriaca flour (0.5%), rosehip (2.5%), vital gluten (2.5%) and malt flour (2%), and their combinations on the quality of organic whole wheat flour were investigated. The highest maximum resistance value was obtained in the treatment containing 0.5% cephalaria and 2.5% rosehip. The addition of malt flour and vital gluten significantly increased the extensibility value. Although rosehip, cephalaria and vital gluten generally increased the dough energy, malt flour decreased the dough energy when compared to the control. The combination of 0.5% cephalaria and 2.5% rosehip significantly decreased the adhesion and stringiness of dough. Data showed that dough rheological characteristics of organic whole wheat flour could be improved with the addition of different materials such as malt flour, cephalaria, rosehip and vital gluten.  相似文献   

19.
脱脂大豆粉对小麦粉及馒头品质影响研究   总被引:1,自引:0,他引:1  
将脱脂大豆粉添加到小麦粉中,研究其对小麦粉理化特性和馒头制作品质的影响。研究结果表明,在小麦粉中添加低于2%的脱脂大豆粉时,可以明显地改善小麦粉的品质,具体体现在可以增加面粉的白度,增加面团的吸水量、稳定时间以及拉伸曲线面积和拉伸比数,还可以改善馒头的品质;当在小麦粉中添加高于2%的脱脂大豆粉时,其对面粉的品质具有不好的影响,具体体现在降低小麦粉的白度以及面团的筋力,对馒头的品质也具有不良的影响,表现为馒头体积变小,颜色发暗。  相似文献   

20.
本文初步探讨了小麦胚芽在二次发酵法制作面包中的应用,研究了不同小麦胚芽预处理条件、添加量和主面团加水量、面包改良剂使用量对面包体积比及面包质量评分的影响。结果表明:就面包体积而言,面包中添加麦胚片优于添加麦胚粉;烘烤、焙炒、脱脂处理的小麦胚芽均可应用于面包中,但添加烘烤麦胚的面包品质最佳,其次是脱脂麦胚,焙炒处理的麦胚面包质量较差,最佳小麦胚芽添加量、主面团加水量和面包改良剂使用量分别是6%、20%和0.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号