首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
废弃织物往往只是通过堆积、填埋、焚毁、降级循环等简单的方法进行处理,作为废弃织物中纤维素利用的初步尝试,选用不同种类的纤维素酶对苎麻纤维进行水解,通过反应温度、pH值、酶用量、浴比、反应时间等对苎麻纤维水解的单因素实验优化水解工艺。结果表明,在相同的反应条件下,酶活力为2 200 IU/mL的固体纤维素酶水解率高于酶活力为2 000 IU/mL的液体纤维素酶。固体纤维素酶优化后的水解工艺条件为:温度40℃、pH值5、酶用量20%(owf)、浴比1∶50、时间3 h,此时水解率可达到21.95%。  相似文献   

2.
云芝(Coriolus versicolor)对秸秆中木质素与纤维素的降解情况受不同Cu2+浓度和pH值条件的影响,设定不同条件可以提高木质素的降解率,降低纤维素的降解率,以更好地保存纤维素的完整性,实现秸秆中主要成分的分离。通过均匀设计法,设定不同的Cu2+浓度环境X1(0、1.0、2.0、4.0、6.0mmol/L)和不同pH值条件X2(2.2、2.8、3.4、4.0、4.6),测定相应条件下云芝的菌丝生长情况、木质素酶活力、纤维素酶活力以及秸秆中木质素和纤维素的降解率。结果表明:木质素的降解率与Cu2+浓度呈正相关,与pH值呈负相关;纤维素的降解率与pH值呈正相关,与Cu2+ 浓度呈负相关。通过试验所得方程预测得知,Cu2+浓度6mmol/L、pH2.2是优化的云芝降解、分离秸秆中主要成分的条件,在该条件下,由所得方程可知秸秆中木质素的降解率为16.1%,纤维素的降解率为27.7%。  相似文献   

3.
用羧甲基纤维素(CMCA)法测定纤维素酶活力,纤维素酶在温度为50℃、pH值为4.8时具有最大酶活,模拟动物体内温度37℃、不同pH值环境下酶活有不同程度的损失.  相似文献   

4.
以椰糠作为碳源,从红树林土壤中分离了一株高产纤维素酶的真菌,命名为DZ10。经形态、生理生化和分子生物学试验,鉴定菌株DZ10为长枝木霉菌(Trichoderma longibrachiatum)。该菌在pH值为6.5、培养温度为35 ℃、初始NaCl含量为2.0%、添加K+终浓度为0.1 mmol/L条件下,椰糠降解率最高为39.88%;在pH值为6.5、培养温度40 ℃、初始NaCl含量3.0%、添加K+终浓度为0.1 mmol/L条件下,羧甲基纤维素酶活力(CMCA)最高值为80.07 U/mL;在pH值为6.0、培养温度35 ℃、初始NaCl含量1.5%、添加K+终浓度为0.1 mmol/L条件下,滤纸酶活力(FPA)最高值为73.81 U/mL。Ca2+、K+对菌株DZ10产酶和椰糠降解率有促进作用,Mg2+抑制菌株DZ10产酶和椰糠降解率。  相似文献   

5.
纤维素酶解对高变性大豆蛋白溶出率影响的研究   总被引:3,自引:2,他引:1  
研究了利用纤维素酶制剂降解高变性脱脂豆粕中的纤维素对提高豆粕中蛋白质水溶出率的作用。通过正交设计实验,确定了纤维素酶制剂的适宜水解条件为pH=5.0、水料比1∶14、酶量=10000I.U/g纤维素、温度T=48℃、粒度=80目、时间t=6h。在上述条件下,水解后豆粕中蛋白质水溶出率达到20.66%。最后,利用蛋白酶来水解纤维素被降解后的豆粕,蛋白质水溶出率达到76.21%,比仅以蛋白酶水解豆粕的蛋白质水溶出率(67.87%)高,说明通过降解纤维素可显著提高高变性脱脂豆粕中蛋白质的溶出率。  相似文献   

6.
以纤维素和秸秆为底物,对纤维素酶在不同条件下的水解效率进行了研究,考察的影响因子包括时间、温度、pH值,同时利用扫描电子显微镜(SEM)分析了酶水解过程中两种底物的结构变化。研究结果表明,在不同pH条件下,纤维素水解效率有显著差异,pH4.0~5.0为其最适范围;温度对水解效率的影响很大,40℃时纤维素和秸秆生成葡萄糖效率最高,分别为56.32%和35.80%;两种底物的水解在24 h内基本完成,48 h水解效率达到最高,纤维素酶水解进行的前6 h中,底物的结构变化最为明显。  相似文献   

7.
研究木质素过氧化物酶和锰过氧化物酶降解蔗渣中木质素的酶解作用条件,得到优化后的酶解木质素条件:酶解液最适pH值为4.0、温度为40℃、酶解时间48h,酶解液中木质素过氧化物酶、锰过氧化物酶、葡萄糖氧化酶活力分别为1.26、1.45、2U/mL,葡萄糖和乙酰丙酮浓度分别为0.01mol/L和0.05mol/L,此时木质素的降解率为18.46%,提高纤维素酶水解率28.67%。  相似文献   

8.
徐勇  蔡鹏  范丽  杭琪  勇强  余世袁 《食品工业科技》2012,33(21):164-167,171
里氏木霉产纤维素酶系中的内切葡聚糖酶(CMCase)、纤维二糖水解酶(CBH)和β-葡萄糖苷酶三大酶类在碱性处理条件下会发生快速、选择性失活。在pH9.00和(25±1)℃的条件下静置处理纤维素酶液30min,CMCase和CBH酶组分主要发生可逆变性失活,而β-葡萄糖苷酶发生不可逆变性失活,它们的残余酶活力分别为58.8%、56.6%和5.7%,相对比例可达到10.3和9.9。通过碱性处理能够得到低β-葡萄糖苷酶活力的纤维素酶制剂,可以显著提高其定向酶水解纤维素制备纤维低聚糖的生产性能,并生成以纤维二糖为主包括少量纤维三糖的纤维低聚糖。以0.1%(v/v)碱处理纤维素酶定向水解10g/L纸浆24h,纤维低聚糖的酶解得率为6.73%,占总糖类的78.2%,比天然酶反应体系提高53.6%。  相似文献   

9.
利用废弃食用菌栽培块通过浸提、膜浓缩、盐析和双水相萃取等方法提取加工工业级和高纯度纤维素酶制剂。结果表明:采用含体积分数0.2% Triton X-100 的pH5.0、0.2mol/L 乙酸- 乙酸钠缓冲液作为酶浸提液,在25℃浸提3h 条件下可以抽提出102.64U/mL 的纤维素酶溶液,再在质量分数60% 的(NH4)2SO4 饱和度条件下可回收65.54% 的纤维素酶总活力,制备成酶活力达到2865.47U/mL 的工业级纤维素酶制剂;再经质量分数22% 聚乙二醇6000(PEG6000)-20%(NH4)2SO4 双水相体系在pH5.5、7mmol/L NaCl 条件下常温萃取,可获得酶活力为10208.46U/mL,酶比活力106.62U/mg 的高纯度纤维素酶,酶总活力得率为51.22%,纯度是浸提液的12.85 倍。  相似文献   

10.
稀酸预处理对玉米秸秆纤维组分及结构的影响   总被引:6,自引:2,他引:4  
研究了稀硫酸预处理对玉米秸秆化学组成变化及纤维素酶水解得率的影响,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、红外光谱(IR)和热重分析(TG)对玉米秸秆纤维结构特性进行了分析。结果表明随着硫酸浓度的增大、温度的升高和时间的延长,纤维素和木质素含量有所增加,而半纤维素含量大幅度降低,且预处理后纤维素酶水解得率也逐渐增大。当处理条件为硫酸质量分数0.75%、温度150℃、时间80 min时,半纤维素降解率为98.02%,所得固体渣纤维素酶水解得率为66.95%(纤维素酶用量20 FPUI/g纤维素)。稀酸预处理后玉米秸秆纤维表面和细胞壁受到不同程度的破坏,表面积增大,孔洞增加,纤维素的结晶度降低,有利于纤维素酶水解作用的进行。  相似文献   

11.
稀酸预处理玉米芯酶解工艺响应面优化研究   总被引:1,自引:0,他引:1  
木质纤维原料还原糖(葡萄糖、木糖)转化是燃料乙醇生产的关键步骤之一,该文以玉米芯为原料,采用稀硫酸处理、酶水解以提高还原糖转化量。以还原糖转化量为考核指标,采用单因素试验及响应面试验设计优化稀酸处理玉米芯酶解条件,拟合硫酸体积分数、加酶量、酶解时间3个因素对还原糖转化量的回归模型。结果表明,最佳酶解工艺为121 ℃条件下预处理60 min,硫酸体积分数0.8%,料液比1∶15(g∶mL),加酶量7%(纤维素酶∶半纤维素酶1∶1),酶解时间70.9 h。在此最佳条件下,采用高效液相色谱(HPLC)法测定酶解液中还原糖转化量为462.62 mg/g,其中木糖、葡萄糖转化量分别为330.02 mg/g、132.60 mg/g,还原糖转化率可达46.3%。  相似文献   

12.
研究了青霉菌对刚毛藻中纤维素的降解条件。首先通过单因素试验,研究了氮源种类、硫酸铵含量、料液比、pH、发酵温度、发酵时间对纤维素降解的影响。选择了pH值、料液比、硫酸铵含量进行L9(33)正交试验设计,考察各因素对蛋白、总糖含量、纤维素酶活的影响,得出最佳降解条件:藻粉3 g/L,料液比1∶15(g∶mL),硫酸铵20 g/L,磷酸二氢钾1 g/L,硫酸镁0.5 g/L,缓冲液pH 6.0,发酵温度为30 ℃,发酵时间为7 d,在此条件下,蛋白含量为12.44 g/100 g,总糖含量0.58 mg/g,纤维素酶酶活4.84 U/g。  相似文献   

13.
以灵芝子实体为原料,采用复合酶法(纤维素酶、半纤维素酶、木瓜蛋白酶)提取灵芝多糖,并分析工艺条件对多糖提取率的影响。在正交试验确定复合酶比例的基础上,采用响应面法对复合酶法提取灵芝多糖的提取条件进行了优化,得到最优工艺条件。研究结果表明,复合酶比例为:纤维素酶3.5%、半纤维素酶4.0%、木瓜蛋白酶3.0%;最佳酶解提取条件为:酶解处理pH值、温度和时间分别为5.70、50℃和81 min,在此条件下灵芝多糖的提取率为3.73%。  相似文献   

14.
以虾仁加工的副产品龙虾头壳为原料,采用酸浸碱煮工艺制备甲壳素,得率为(16.11±0.73)%;浓碱处理脱乙酰基制得壳聚糖,得率为(68.07±1.60)%(相对于甲壳素);选用纤维素酶对壳聚糖进行降解制备低聚壳聚糖。分别研究了加酶量、pH、温度、时间、底物物浓度对壳聚糖降解为低聚壳聚糖的影响。选择0.5%的壳聚糖浓度,通过优化设计试验,确定纤维素酶降解壳聚糖最佳条件为:加酶量8IU/(g底物),pH5.0,温度60℃,时间4h。取最佳工艺条件下降解的低聚壳聚糖,采用乙醇分步沉淀,EP75为(2.36±0.15)%,平均聚合度为9;EP87为(0.85±0.15)%,平均聚合度为7;ES87为(79.84±0.10)%,平均聚合度为5。龙虾头壳制备壳聚糖,纤维素酶降解制成聚合度10以下的低聚壳聚糖,平均得率为8.8%。  相似文献   

15.
目的:实现玉米芯的再利用与资源优化。方法:以玉米芯为原料,采用纤维素酶、半纤维素酶协同降解玉米芯制备还原糖,在单因素试验基础上,利用响应面法对双酶配比、酶添加量、酶解时间、酶解温度等工艺条件进行优化。结果:玉米芯降解产还原糖的最优工艺参数为:双酶配比(m纤维素酶∶m半纤维素酶)13∶2,酶添加量3.25%,酶解时间5.0 h,酶解温度50℃,该条件下制备的玉米芯酶解液中还原糖含量可达12.45 mg/mL。结论:选用纤维素酶、半纤维素酶协同降解玉米芯高效定向制备还原糖,可实现玉米芯的高值化利用。  相似文献   

16.
橘皮果胶生产工艺优化及品质分析   总被引:1,自引:0,他引:1  
为充分利用农业废弃物柑橘皮,进一步提高皮中果胶的提取效率,在Placket-Burman试验的基础上,采用Box-Behnken中心组合设计对橘皮果胶复合酶提取工艺中的时间、温度和酶添加量3因素的最优化组合进行定量研究,建立并分析各因素与果胶得率关系的数学模型。结果表明:最佳的工艺条件为酶解时间5.1h、温度41℃、复合酶添加量0.46%。在此条件下经实验验证,果胶得率理论值12.35%,验证实测值12.22%,相对误差1.05%;说明回归模型能较好地预测橘皮中果胶的提取得率。经检测,产品果胶所有指标均达到或超过国家标准。  相似文献   

17.
The mechanism by which enzyme additives improve feed digestion in ruminants is not fully understood. Direct hydrolysis of feed in the rumen is a potential mode of action, but the importance of this mode needs to be quantified because of the relatively low exogenous hydrolase activity added compared with the total activity present in the rumen. We examined the interactions between ruminal and exogenous enzymes on fiber degradation using a completely randomized experimental design, with an 11 (enzyme preparations and their combinations) x 5 (assay pH) arrangement of treatments. Ruminal enzymes were extracted from cattle receiving high fiber or high concentrate diets and exogenous enzymes were Trichoderma longibrachiatum preparations containing different proportions of xylanase and cellulase activities. Ruminal and exogenous enzyme preparations and their combinations were tested for the ability to degrade soluble cellulose, xylan, and corn silage over a range of pH from 4.5 to 6.5 at 39 degrees C. T. longibrachiatum enzymes acted synergistically with enzymes from mixed rumen microorganisms in degrading soluble cellulose, xylan, and corn silage. Hydrolysis increased by up to 35, 100, and 40% for soluble cellulose, xylan, and corn silage, respectively, and was most evident at a pH range between 5.0 and 6.0. The synergistic effect between ruminal and exogenous enzymes increases the hydrolytic potential within the rumen environment and is likely a significant mechanism by which enzyme additives improve feed digestion.  相似文献   

18.
Cellulose is the most abundant renewable polysaccharide with a high potential for degradation to useful end products. In nature, most cellulose is produced as crystalline cellulose. Therefore, cellulases with high hydrolytic activity against crystalline cellulose are of great interest. In this study, a crystalline cellulose degradation enzyme was investigated. The cDNA encoding a β-glucanase, CbhYW23-2, was cloned from the ruminal fungus Piromyces rhizinflatus. To examine the enzyme activities, CbhYW23-2 was expressed in Escherichia coli as a recombinant His(6) fusion protein and purified by immobilized metal ion-affinity chromatography. Response surface modeling (RSM) combined with central composite design (CCD) and regression analysis was then employed for the planned statistical optimization of the β-glucanase activities of CbhYW23-2. The optimal conditions for the highest β-glucanase activity of CbhYW23-2 were observed at 46.4°C and pH 6.0. The results suggested that RSM combined with CCD and regression analysis were effective in determining optimized temperature and pH conditions for the enzyme activity of CbhYW23-2. CbhYW23-2 also showed hydrolytic activities toward Avicel, carboxymethyl cellulose (CMC), lichenan, and pachyman. The results also proved that the high activity of CbhYW23-2 on crystalline cellulose makes it a promising candidate enzyme for biotechnological and industrial applications.  相似文献   

19.
王栋  龚大春  邵伟  宋发友  王亚军 《酿酒》2007,34(6):89-92
利用高浓度的麦秸底物含量和低浓度纤维素酶载入量SSF法转化乙醇.找出了纤维素的转化率与麦秸底物含量及加入酶量之间的关系.在低浓度麦秸底物和低纤维素酶含量的条件下,乙醇的转化率仍可达到70%.在高浓度麦秸底物时候,纤维素酶含量的降低量对乙醇产率的减少量的影响呈先快后慢的特点,当发酵液酶活力为4FPU/mL时,乙醇的含量可以达到17g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号