首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
β-木糖苷酶在完全快速降解木聚糖类半纤维素为木糖的过程中起重要作用.海栖热袍菌(Thermotoga maritima)是一个极端嗜高温厌氧细菌,所产耐热酶类具有非常可观的工业应用前景,但这类酶在大肠杆菌中的表达很低.采用基因重组技术将源自海栖热袍菌的具有阿拉伯糖苷酶活性的耐热β-木糖苷酶基因克隆至表达载体pET-28a,与组氨酸标签融合表达构建重组质粒pET-28a-xyl,然后转化不同大肠杆菌宿主,结果在大肠杆菌BL21-CodonPlus(DE3)-RIL中获得高效表达;重组酶蛋白经诱导表达、破胞和热处理后纯度在90%以上,经Ni2 亲和层析后达电泳纯;用HPLC和TLC检测酶解产物,β-木糖苷酶和木聚糖酶联合水解后,酶解产物主要为木糖,外加阿拉伯糖苷酶后能使其酶解产物中木糖含量明显提高.因此,具有阿拉伯糖苷酶活性的耐热β-木糖苷酶在木糖制备中具有重要的工业应用价值.  相似文献   

2.
以小麦麸皮为原料,采用碱提法对小麦麸皮中的水不溶性阿拉伯木聚糖进行提取。以水不溶性阿拉伯木聚糖得率为响应值,采用单因素试验和响应面分析法对其提取工艺进行优化,并利用不同木聚糖酶对其进行酶解,采用薄层色谱(TLC)法对酶解产物进行分析。结果表明,水不溶性阿拉伯木聚糖的最佳提取工艺为料液比1∶193(g∶mL)、提取温度61 ℃、提取时间5 h。在此最优提取工艺条件下,水不溶性阿拉伯木聚糖的得率为51.61%,较优化前提高20.71%。用不同种类木聚糖酶对提取的水不溶性阿拉伯木聚糖进行酶解,TLC分析结果表明,链霉菌10904来源的木聚糖酶A对水不溶性阿拉伯木聚糖有较好的底物特异性,酶解产物丰富且以木二糖为主,为阿拉伯低聚木糖的制备提供理论依据。  相似文献   

3.
目的:对毛壳霉(Chaetomium sp.)CQ31木聚糖酶B(CsXyn11B)进行分泌表达,以提高产酶水平并探究在面包烘焙中的应用价值。方法:将木聚糖酶基因在毕赤酵母中表达,高密度发酵提高其产酶水平,对酶学性质进行表征并将其应用在面包烘焙中。结果:重组菌经高密度发酵156 h,木聚糖酶酶活力为2788 U/mL。CsXyn11B最适pH为8.0,最适温度为65 ℃。CsXyn11B能够水解多种木聚糖底物,对燕麦木聚糖、小麦阿拉伯木聚糖、榉木木聚糖和桦木木聚糖的比酶活分别为1145.8、1041.7、692.3和653.3 U/mg。该酶水解阿拉伯木聚糖,水解产物以聚合度4~6的低聚木糖为主。在面包制作过程中加入3 mg/kg CsXyn11B使面包比容增加15.9%,面包硬度降低25.3%,4 ℃贮藏2 d后硬度比对照组降低17%。结论:毛壳霉木聚糖酶B的优良酶学特性使其在烘焙食品中具有良好的应用前景。  相似文献   

4.
草菇半纤维素酶系统的诱导、分布及初步定性   总被引:1,自引:0,他引:1       下载免费PDF全文
以蔗糖、果胶、羧甲基纤维素或木聚糖为碳源培养草菇 (Volvariellavolvacea) ,对所产生的半纤维素酶进行初步研究发现 ,半纤维素酶系主要是由木聚糖诱导 .半纤维素酶中的木聚糖酶分布在胞外 ,木糖糖苷酶分布在胞内 ,阿拉伯糖苷酶胞内胞外都有分布 .木聚糖酶的最适反应温度为 6 0℃ ,最适反应 pH为 5 .8,在pH 5 .4~ 7.0时比较稳定 ,保温 1h酶活的半衰温度是 5 5℃ .木糖糖苷酶的最适反应温度为 5 5℃ ,最适反应 pH为 6 .6 ,在 pH 6 .6~ 7.4时比较稳定 ,保温 1h酶活的半衰温度是 5 2℃ .阿拉伯糖苷酶的最适反应温度为 6 0℃ ,最适反应pH为 5 .0 ,在 pH 4 .6~ 6 .2时比较稳定 ,保温 1h酶活的半衰温度为 6 0℃ .  相似文献   

5.
酶水解爆破秸秆制备低聚木糖   总被引:5,自引:1,他引:5  
研究了木聚糖酶水解爆破秸秆制备低聚木糖的工艺,得到如下结论:当爆破秸秆与水质量比为1∶7.5、pH6.0、黑曲霉木聚糖酶添加量为198U/g(干基)、53℃、酶解12h时,可获得较好的酶解效果,酶解液总糖含量达到49.80mg/mL,还原糖含量达到17.03mg/mL、木聚糖水解率达到63.77%(对原料木聚糖)、木聚糖平均聚合度降至3.10;酶解产物中低聚糖主要为木二糖和木三糖,低聚木糖含量达到50.80%(对固形物)。  相似文献   

6.
《食品与发酵工业》2015,(4):115-120
研究了蒸煮法及碱提法对玉米芯木聚糖的提取效果,并利用重组木聚糖酶Xyn A对玉米芯低聚木糖的酶解制备条件进行了优化。对木聚糖得率及酶解产物进行了分析,确定碱提法所得玉米芯木聚糖适宜作为酶解底物制备低聚木糖。优化后得到酶解制备玉米芯低聚木糖的工艺条件:底物浓度0.9%,酶解温度49℃,酶解时间4.5 h,还原糖量可达33.9%。另外,对酶解成分进行分析,结果表明酶解碱提玉米芯木聚糖可产生以木二糖及木三糖为主要成分的低聚木糖。  相似文献   

7.
不同原料酶法制备低聚木糖的研究及成分分析   总被引:1,自引:0,他引:1  
对木聚糖酶的酶学特性进行了研究,同时以甘蔗渣、玉米芯、麸皮、啤酒槽为原料酶解制备低聚木糖并对其酶解液的还原糖含量和主要成分进行了分析。结果表明:该木聚糖酶的最适反应温度为60℃,最适反应pH为5.0;同时在温度为40~60℃和pH为6的情况下,木聚糖酶具有较好的稳定性。在最佳酶解条件下,采用木聚糖酶酶解甘蔗渣、玉米芯、麸皮、啤酒槽中的木糖,通过测定酶解液中的还原糖含量以分析木聚糖的水解度,结果表明,麸皮中木聚糖的水解度最高,为21.19mg/mL;其它依次为啤酒糟、玉米芯、蔗渣。采用高效液相色谱法对4种不同原料的木聚糖酶水解产物进行分析,结果显示:啤酒糟的酶解产物中木二糖和木三糖的相对含量最高,分别为13%、26.7%,其他依次为玉米芯、麸皮、甘蔗渣。  相似文献   

8.
α 阿拉伯糖苷酶 /木糖苷酶对来源于被子植物的木聚糖类半纤维素的生物降解和转化是必不可少的。文中首次报道了国内对该酶的研究。α 阿拉伯糖苷酶 /木糖苷酶的基因工程菌在发酵罐中以LB为基质进行生长 ,以乳糖为诱导剂 ,所产生的α 阿拉伯糖苷酶 /木糖苷酶在 70℃热处理 3 0min后、经DEAE Sephacel阴离子柱层析、金属Ni2 + 的亲和层析等提纯步骤 ,达到了电泳纯 ,提纯倍数为 49 3倍 ,收率为 2 0 4%。SDS PAGE法测定α 阿拉伯糖苷酶/木糖苷酶的分子质量为 85ku ,与理论推算值相吻合  相似文献   

9.
在单因素试验基础上应用响应面试验,优化重组耐热性木聚糖酶(XynB)和α-葡萄糖醛酸酶(AguA)联合水解桦木木聚糖的条件。响应面法分析结果显示,4个影响因素的最佳组合为底物质量浓度4.2g/100mL、酶解温度80.66℃、pH7.65、XynB/AguA加酶量60/9U/g,此时还原糖释放量为17.82mg/mL。利用木聚糖酶和葡萄糖醛酸酶共同作用木聚糖4h所得低聚木糖中还原糖质量浓度为17.91mg/mL,木二糖质量浓度为13.66mg/mL。  相似文献   

10.
本文以橄榄绿链霉菌E-86产木聚糖酶水解玉米芯汽爆液生产低聚木糖为目的,研究了玉米芯汽爆液的水解特征,并与玉米芯木聚糖的酶解产物组成进行了比较,得到如下结果:加酶量120U/100ml、酶解反应8h可获得较好的酶解效果,直接还原糖量46μmol/ml、平均聚合度3.1、水解率46%;玉米芯汽爆液和玉米芯木聚糖的酶解产物中低聚糖组成大致相同,主要是木二糖和少量的木三糖、木糖,汽爆液酶解产物中还含有极少量的鼠李糖和阿拉伯糖;玉米芯汽爆液可代替玉米芯木聚糖为底物生产低聚木糖。  相似文献   

11.
研究对前期筛选的一株产木聚糖酶菌株L10608进行鉴定,判定其为链霉菌。并对该菌株所产木聚糖酶进行纯化得到电泳级纯度木聚糖酶L10608-Xyn11。该酶蛋白质分子量为24 k Da。探究L10608菌株所产木聚糖酶以商品玉米芯木聚糖、商品燕麦木聚糖、自制水不溶性玉米芯木聚糖为底物时的水解特性,结果表明该菌所产木聚糖酶对木三糖有很强的水解作用,以自制水不溶性玉米芯木聚糖为底物水解时效果最为明显,底物中木三糖的含量下降了1.521 mg/m L,产物中木二糖增加了1.635 mg/m L,木糖仅增加了0.180 mg/m L。菌株L10608的酶解产物中低聚木糖的产量远高于木糖,且高产低聚木糖中的主要有效成分木二糖,其水解特异性表明该菌有潜力作为益生元型低聚木糖的生产菌株。  相似文献   

12.
木聚糖酶的特性及应用研究   总被引:2,自引:0,他引:2  
木聚糖酶(Xylanase)[EC 3.2.1.8]是指将木聚糖降解成低聚糖和木糖的一组酶的总称,是木聚糖降解酶系中最关键的酶。文中对木聚糖酶的特性,测定酶活的方法,以及木聚糖酶在工业上的应用进行综述。  相似文献   

13.
尤梦竹  陆健  蔡国林 《食品与机械》2016,32(6):189-192,200
玉米秸秆经多级旋风磨机械预处理后物理结构发生改变,更易被相应的酶水解从而释放出阿魏酰聚糖。相同酶解条件下,多级旋风磨预处理后的秸秆的阿魏酰聚糖含量是粗秸秆的3.34倍;用商品复合酶Validase TRL、HSP 6000BG和Rapidase Smart Clear,木糖苷酶及阿拉伯呋喃糖苷酶分别酶解机械预处理后的玉米秸秆,Validase TRL酶解效果最佳,阿魏酰聚糖得率为1.46μmol/g玉米秸秆,是不加酶时的3.48倍;协同酶解的最优组合为Validase TRL 100 U/g,木糖苷酶50U/g和阿拉伯呋喃糖苷酶50U/g,该条件下阿魏酰聚糖的得率为2.87μmol/g;酶解液经大孔树脂分离纯化后,阿魏酰聚糖的回收率为81.44%。  相似文献   

14.
木聚糖是存在于植物细胞壁中,含量仅次于纤维素的自然界第二丰富的可再生资源。木聚糖结构复杂,其彻底水解需要1组酶的共同作用,其中β-1,4-内切木聚糖酶能够特异性地作用于木聚糖,是木聚糖水解的关键酶。木聚糖酶在食品生产与加工中发挥了重要作用。本文综述了木聚糖酶的特性及产生情况,以及在面制品、酒、低聚木糖等食品领域的应用情况。  相似文献   

15.
微生物木聚糖酶的生产及其在食品工业中应用的研究进展   总被引:16,自引:0,他引:16  
木聚糖酶(Xylanase,EC.3.2.1.8)是木聚糖降解酶系中最关键的酶,在食品等工业中具有很大的应用潜力和价值。木聚糖酶主要由微生物生产,而不同来源的木聚糖酶的性质存在差异,木聚糖酶的生产应该多样化才能满足不同的应用需要。木聚糖酶的性质、原料中木聚糖结构和加工工艺等因素都影响木聚糖酶在食品工业中的应用效果。文章重点介绍了木聚糖酶的诱导机制、生产及其在生产低聚木糖和焙烤食品中应用的研究进展。  相似文献   

16.
微生物木聚糖酶及其应用   总被引:1,自引:0,他引:1  
木聚糖(Xylan)是植物半纤维素的主要成分,是一种复杂的多聚五碳糖。木聚糖酶(Xylanase,EC 3.2.1.8)以内切方式作用于木聚糖主链,产生不同链长的寡糖和少量的木糖,是木聚糖降解酶系中最为关键的酶。本文综述了微生物木聚糖酶系统、微生物木聚糖酶的分类及其来源分布、微生物木聚糖酶的特性、产生及在食品、造纸、饲料行业的应用。  相似文献   

17.
优化酶解处理油茶籽壳制备低聚木糖的工艺条件。以油茶籽壳为原料,经碱法制备木聚糖粗提液。以所得的木聚糖粗提液为原料,低聚木糖浓度为考核指标,酶解温度、木聚糖酶使用量、酶解时间和木聚糖底物浓度为变量因子,进行单因素试验。在单因素试验基础上,利用响应面法对酶法制备低聚木糖工艺进行优化研究。结果表明,最佳的制备工艺为:酶添加量5%、酶解时间10 h、酶解温度49℃、底物浓度2%。在此优化酶解工艺条件下,测得低聚木糖浓度为11.63 g/L,比未优化前提高4.63 g/L。试验所得到的酶解处理油茶籽壳制备低聚木糖的工艺条件具有实用价值,能为提高利用油料加工副产物油茶籽壳的附加值提供理论依据。  相似文献   

18.
以木聚糖酶Shearzyme 500L水解蔗渣木聚糖制备低聚木糖,用DNS法测定酶解液中的总糖和还原糖,HPLC法测定酶解产物组成,其适宜的水解条件为底物质量浓度3g/100mL、pH5.0、60℃、木聚糖中酶用量50U/g、水解时间24h。在此条件下底物水解率约为63.1%,水解产物的81.5% 为低聚木糖,其中木二糖占54.8%,木三糖占26.7%。Shearzyme 500L 不能将一分子木二糖水解为两个木糖单糖,但能水解木三糖并相应生成木二糖与木糖。副产物木糖能显著抑制Shearzyme 500L 活性,降低木聚糖的水解率。  相似文献   

19.
本文研究了利用自筛菌株酶法制备棉籽壳低聚木糖的基本工艺。低聚木糖是主要的功能性食品添加剂,棉籽壳是生产低聚木糖的良好来源。因此,如何有效的从棉籽壳中提取低聚木糖成为亟待解决的问题。本研究中通过筛选鉴定(法国梅里埃生物自动识别系统)得到一株新的产内切型木聚糖酶的菌株-少动鞘氨醇单孢菌。通过酶解木聚糖工艺的优化,结果表明:当酶解温度为30℃,酶解8 h,木聚糖酶的浓度15%,底木聚糖浓度为40 g/L时,低聚木糖的得率可达到53.20%,经HPLC分析,酶解野种木二糖和木三糖占低聚木糖总量的48.56%,低聚木糖占总糖的82%以上,以上研究可为工业生产低聚木糖工艺的优化提供依据。  相似文献   

20.
低聚木糖是水解木聚糖得到的一种功能性的木寡糖。以玉米芯为原料,利用复合酶制剂酶解玉米芯制备低聚木糖,对复合酶制剂的组成配比进行了正交试验确定复合酶制剂中阿魏酸酯酶、漆酶和木聚糖酶最佳配方分别是0.2%、0.3%和0.6%。添加复合酶制剂至料液比为1∶20(g∶mL),在最适温度为50℃,酶解4 h后,低聚木糖的含量达到16.8 g/L。与单一酶制剂木聚糖酶的作用相比,低聚木糖的含量提高了64.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号