首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用过热蒸汽干燥+热风干燥工艺制备马铃薯颗粒全粉:前段(含水率50%~78%)采用过热蒸汽干燥完成淀粉熟化和部分脱水,后段(含水率7%~50%)采用65℃热风干燥。其中,过热蒸汽干燥试验选取过热蒸汽温度、蒸汽流速和马铃薯片厚度为试验因素,设计三元二次回归正交组合试验,研究过热蒸汽温度、蒸汽流速和切片厚度对马铃薯过热蒸汽干燥特性和后续热风干燥特性的影响,以及马铃薯全粉松散堆积密度和水合能力与过热蒸汽干燥阶段干燥参数间的关系式。结果表明,马铃薯过热蒸汽干燥速率随蒸汽温度和蒸汽流速的增加而提高,随切片厚度的增加而降低;不同条件的过热蒸汽干燥所得半干马铃薯其后续热风干燥特性无明显差异,但与传统加工工艺相比,总干燥时间明显缩短;建立的马铃薯颗粒全粉松散堆积密度和水合能力与过热蒸汽干燥阶段控制参数间的回归模型显著,决定系数R2分别为0.820和0.662,验证试验所得马铃薯颗粒全粉松散堆积密度和水合能力实测值与回归模型模拟值相对误差分别19.93%和29.07%。研究结果显示,过热蒸汽干燥联合热风干燥制备马铃薯颗粒全粉可减少操作环节,缩短总干燥时间,该技术具有推广应用价值。  相似文献   

2.
王兰  邓波  邓放明 《食品与机械》2019,(10):135-139
以紫色马铃薯膨化干燥产品含水率、色泽、硬度、复水比、表观密度和花青素含量为品质评价指标,探讨切片厚度、柠檬酸浓度、热烫时间、预干燥时间和冻融处理对各指标的影响。结果表明:紫色马铃薯切片厚度2mm,0.2%柠檬酸护色20min,热烫1min,冷却,-18℃冻融12h,自然解冻,在膨化温度80~90℃、抽空温度60~70℃条件下所制备的紫色马铃薯膨化产品含水率4.04%,硬度327.28g,△E值33.21,复水比3.85,表观密度0.76g/mL,花青素含量291.60mg/100g(以干基计),产品色泽、酥脆性和口感都较好。  相似文献   

3.
《食品与发酵工业》2019,(14):150-157
为提高白玉菇干制品质量,对白玉菇进行远红外干燥试验,通过单因素试验分析远红外温度、切片厚度和装载量对白玉菇干燥特性和干制品质量的影响,并进一步正交设计优化干燥参数。结果表明,单因素试验中远红外温度在50~70℃、切片厚度在2~6 mm、装载量在10~15 g/dm2白玉菇干基含水率、水分比、干燥速率较为适合。优化后各因素对干燥品质综合影响程度分别为:切片厚度>远红外温度>装载量,最佳干燥参数为:远红外温度60℃,切片厚度4 mm,装载量15. 00 g/dm2,此条件下白玉菇干制品亮度L*值为37. 81,VC含量为14. 52 mg/100 g,复水比为3. 12,感官评分为91,质量较优。该研究结果为远红外干燥白玉菇产业化生产提供参考。  相似文献   

4.
为提高马铃薯片的热风干燥效率及品质,控制其干燥过程中的收缩变形,本文研究了不同热风温度(45、55、65、75 ℃)和切片厚度(3、5、7、9 mm)对马铃薯片热风干燥特性曲线、有效水分扩散系数及活化能等指标的影响。结果表明,干燥室内热风温度越高、马铃薯切片厚度越小时,干燥速率越快。在研究范围内,马铃薯片的有效水分扩散系数在5.02×10?10~11.53×10?10 m2/s范围内,其值随热风温度升高或切片厚度减小而增大。此外,研究发现Weibull分布函数能够很好地描述马铃薯片的降速干燥过程和收缩动力学模型。通过Arrhenius方程计算得到马铃薯片的干燥活化能和收缩活化能分别为27.35和46.44 kJ/mol,马铃薯片干燥比收缩消耗活化能少。本研究为马铃薯片在热风干燥加工中水分迁移和体积收缩变化的预测提供了理论依据和技术支撑。  相似文献   

5.
研究雪莲果样品厚度、装料量、干燥温度、风速和旁通比对雪莲果热泵干燥特性及质量变化的影响。结果表明:雪莲果干燥速率随着样品厚度和装料量的增加而降低,随着干燥温度和风速的升高而增加。雪莲果热泵干燥过程绝大部分以降速干燥为主伴随相对较短时间的恒速干燥,而有些干燥速率曲线只存在降速干燥阶段。综合考虑单位能耗除湿率、色泽差异、收缩率、复水比,雪莲果热泵干燥最适参数范围:样品厚度2~4 mm、装料量1~2 kg/m2、干燥温度25~35 ℃、风速1.5~2.0 m/s。而旁通比对雪莲果热泵干燥进程影响不显著。  相似文献   

6.
以新鲜苹果片为研究对象,采用本单位研制的太阳能低温吸附干燥(LSAD)系统为实验设施,探讨干燥温度、相对湿度、干燥介质流速、载样量、切片厚度对苹果片太阳能低温吸附干燥特性的影响。结果表明,苹果片太阳能低温吸附干燥过程可以分为三个阶段:即调整、恒速、降速干燥阶段;其中干燥温度对苹果片干燥的速率影响最显著,如50℃比10℃节时达65.9%,各因素对苹果片干燥的影响的主次顺序为干燥温度相对湿度干燥介质流速切片厚度载样量,苹果片太阳能低温吸附干燥优化的工艺条件为:干燥温度50℃、相对湿度20%、干燥介质流速0.9 m/s、载样量7.5 kg/m~2、切片厚度3 mm;采用数学软件选用3种模型对实验数据进行计算拟合,苹果片干燥数学模型与Page模型拟合程度最高,苹果片太阳能低温吸附干燥数学表达式为MR=exp(-0.00557*t^1.76669);此模型的建立为应用太阳能低温吸附干燥生产脱水苹果片提供理论支撑。  相似文献   

7.
目的:优化红枣片干燥工艺,改善产品品质。方法:以红枣片为研究对象,研究转换含水率、红外温度和切片厚度与干燥时间和干燥速率的相关关系,计算红枣片在FD-IRD中水分有效扩散系数随转换含水率、红外温度和切片厚度的变化规律,并根据试验数据计算红枣片FD-IRD的干燥活化能。结果:转换含水率越低,红外干燥时间越短,但过低的转换含水率,会使冷冻干燥时间大幅延长;适当提高红外干燥温度有利于提高水分有效扩散系数;红枣片越薄干燥速率越大,减小切片厚度能够提高水分有效扩散系数,利于缩短干燥时间;前后两段均为降速干燥过程,通过费克第二定律求解得到不同干燥条件下的冷冻干燥和红外干燥的水分有效扩散系数分别为3.39×10-9~9.47×10-9,3.34×10-9~2.01×10-8 m2/s;通过阿尼乌斯公式计算出红外干燥阶段干燥活化能为59.03 kJ/mol。结论:在转换含水率30%,红外温度60℃,切片厚度6 mm的条件下,冷冻—红外组合干燥技术所用干燥时间短、效率高。  相似文献   

8.
为了提高猕猴桃切片制干品质、缩短干燥时间,采用流化床干燥技术对其进行干燥,研究温度(55,65,75,85℃)、风速(1.5,2.5,3.5,4.5m/s)和厚度(5,10,15mm)对猕猴桃切片热风干燥曲线、水分有效扩散系数以及干燥活化能的影响。结果表明:猕猴桃切片的整个干燥过程属于降速干燥,水分有效扩散系数为1.29639×10-9~4.58994×10-9 m2/s,且随温度、风速的增大而升高,随切片厚度的减少而增大;猕猴桃切片活化能为23.03kJ/mol。对10种常见的干燥动力学模型进行拟合发现,Logarithmic模型效果最佳。  相似文献   

9.
任广跃  化春光  段续  朱文学 《食品科学》2010,31(22):203-206
研究微波功率、单位质量微波功率和切片厚度对鲜切怀山药片干燥特性的影响。采用三因素三水平(耗能功效、干燥速率、多糖得率)正交试验,对鲜切怀山药片的微波干燥工艺参数进行优化。结果表明:鲜切怀山药片微波干燥过程中升速、恒速和降速三个阶段明显,其最佳工艺参数为微波功率600W、单位质量微波功率8W/g、切片厚度5mm。  相似文献   

10.
随着马铃薯主粮化进程的不断推进,马铃薯全粉不仅是多种食品加工行业的主要原料,更以相当的比例进入粮食产品中成为主粮。马铃薯全粉以新鲜马铃薯为原料,经过清洗、去皮、切分、蒸煮和破碎等工序加工而成。研究在传统的制片打粉工艺基础上对其改良、简化,探究切片厚度、蒸煮时间、干燥温度和时间这4个因素对全粉品质的影响,通过正交试验获得最佳的工艺参数:切片厚度8 mm,蒸煮10 min,热风干燥温度90℃,干燥时间7h。所得马铃薯粉理化指标均达到行业标准,粉中营养物质VC含量高,色泽好,有马铃薯香味。  相似文献   

11.
Mathematical modelling of hot air drying of sweet potato slices   总被引:3,自引:0,他引:3  
The effect of air dry bulb temperature, air relative humidity, air velocity and sample thickness on the thin-layer air drying of sweet potato slices was investigated. The drying rate curves consisted of two approximately linear falling rate periods and contained no constant rate period. Several mathematical models were fitted to the drying rates of sweet potato slices under a range of drying conditions. It was found that the modified Page equation best described the thin-layer air drying of sweet potato slices down to a moisture content of 10% dry basis. Correlations were also determined for the slope and intercept of the modified Page equation in terms of the experimental variables.  相似文献   

12.
研究魔芋片在热风对流干燥过程中芋片干燥速率变化,以及温度和干燥介质流量对其的影响.研究结果表明:魔芋片的对流干燥过程可分为预热期、恒速干燥期和降速干燥期3个阶段;升高干燥温度和增大干燥介质流量,会使干燥速率增大,恒速干燥期缩短,降速期干燥速率下降加快,110℃是魔芋片对流干燥的最佳温度.  相似文献   

13.
马铃薯超声强化冷风干燥及品质特性   总被引:1,自引:0,他引:1  
为探讨直触式超声对马铃薯冷风干燥的强化效应,利用超声-热泵式冷风干燥设备进行干燥实验,研究不同超声功率及冷风温度对马铃薯干燥过程、微观结构及主要营养成分的影响。结果表明:提高超声功率及干燥温度能够明显缩短马铃薯所需干燥时间,较低温度下的超声强化效果优于较高温度;马铃薯超声强化冷风干燥呈先恒速、后降速的干燥过程,表明该干燥过程由表面扩散控制转化为内部扩散控制;超声强化能够增大和增多物料表面的微细孔道,从而有利于水分传递;Weibull分布函数可很好地拟合马铃薯超声强化冷风干燥过程,利用该模型计算所得的估算水分扩散系数Dcal随着干燥温度和超声功率的升高而增大,表征干燥时间的尺度参数α则随着超声功率的升高而减小;冷风温度和超声功率对干燥产品的总酚、总黄酮、VC含量有显著影响(P<0.05),在冷风干燥过程中施加超声辅助处理有利于提高营养成分含量。利用层次分析法计算得到的优化参数为干燥温度10 ℃、超声功率48 W时,对应的总酚、总黄酮、VC含量分别为296、52、96 mg/100 g。因此,将超声强化技术用于马铃薯冷风干燥中能够显著缩短干燥时间并有效保护产品品质。  相似文献   

14.
以熟化紫薯片为研究对象,利用可调微波干燥机干燥熟化紫薯片,探讨不同微波功率、装载量和切片厚度对熟化紫薯片的干燥特性、水分有效扩散系数及色泽的影响,通过SPSS软件对试验数据进行数学模型拟合,得到熟化紫薯片微波干燥模型。结果表明,熟化紫薯片的微波干燥过程表现为恒速干燥;微波功率、装载量和切片厚度对熟化紫薯的微波干燥特性均有一定影响,微波功率和装载量对其影响最为显著;微波功率越大、装载量越小、切片厚度越小,物料的干燥速率越大。熟化紫薯片微波干燥过程中的水分有效扩散系数随着微波功率与切片厚度的增大、加载量的减小而增大,其最大值为1.1354×10^-8 m^2/s,其平均活化能为4.8938 W/g;当微波功率较大、装载量较小时得到的干燥熟化紫薯片品质较差,而切片厚度对其影响不显著。所选用的6个模型中,Modified Page模型具有最大的确定系数R 2.0.9997),最低的RMSE(0.0061)和最小的χ^2.0.0005),是熟化紫薯片微波干燥的最佳模型,可有效描述熟化紫薯片微波干燥过程中的水分随时间的变化规律。  相似文献   

15.
为研究马铃薯薄片热风干燥过程中热变形量变化,本文通过三维点云结合数字图像分析技术,研究不同直径(22、33、44 mm)和厚度(1、3、5 mm)马铃薯薄片在干燥过程中形态变化情况。将三维点云数据转换至16 位灰度图像,根据所获取图像特征,采用阈值分割、形态学处理及中值滤波等数字图像处理方法实现了马铃薯薄片高度信息离群点去除、孔洞填充;通过马铃薯薄片时变伪彩色等高线图,结合干燥收缩机制解析翘起高度(简称“高度”)时变情况,干燥过程中高度收缩经历了规律性翘曲、坍塌和卷曲3 个阶段;以高度均值变化率为量化指标,发现高度均值变化率拐点时间点与厚度呈正相关,与直径无关,拐点前不同个体高度具有较高的一致性,拐点后高度个体差异性明显。提取了拐点和终止点处的均值变化率及平行样品之间的方差为特征点进行分析,发现在拐点处,直径和厚度对均值变化率和方差均影响不大,在厚度为5 mm时,其均值变化率的平均值为-39.55%;在终止点处,均值变化率、方差与直径成正相关,与厚度呈负相关关系,厚度为1 mm、直径为44 mm的马铃薯薄片均值变化率和方差分别达到了317.38%和199.34%。本实验以高度值为指标,对马铃薯薄片干燥过程中的形态变化分析,可为后续干燥工艺智能化控制提供理论依据。  相似文献   

16.
目的:提高规模化生产的哈密瓜品质,缩短干燥周期。方法:以不同漂烫时间(0.5,1.0,1.5,2.0,2.5 min)、浸渍液(0.1%,0.2%,0.3%,0.4%,0.5%柠檬酸溶液)预处理哈密瓜切片,并分别研究不同热风温度(35,45,55,65,75℃)、热风速度(0.5,1.0,1.5,2.0,2.5 m/s)和切片厚度(2,4,6,8,10 mm)条件下的哈密瓜切片热风干燥特性和水分扩散系数,拟合不同薄层干燥数学模型。结果:0.4%柠檬酸预处理后得到品质最优的干制产品,热风温度和切片厚度对切片干燥影响较为显著,哈密瓜切片无恒速干燥阶段,有效水分扩散系数为1.1348×10-7~4.9080×10-7 m2/s,活化能为28.15 kJ/mol。结论:哈密瓜切片的最佳热风干燥工艺为热风温度55℃、热风速度2.0 m/s、切片厚度6 mm,Page模型具有最高的R2值和最小的均方根误差,更适于评估和预测哈密瓜热风干燥的水分去除规律。  相似文献   

17.
Modelling of air drying of fresh and blanched sweet potato slices   总被引:4,自引:0,他引:4  
Effects of blanching, drying temperatures (50–80 °C) and thickness (5, 10 and 15 mm) on drying characteristics of sweet potato slices were investigated. Lewis, Henderson and Pabis, Modified Page and Page models were tested with the drying patterns. Page and Modified Page models best described the drying curves. Moisture ratio vs. drying time profiles of the models showed high correlation coefficient (R2 = 0.9864–0.9967), and low root mean squared error (RMSE = 0.0018–0.0130) and chi‐squared (χ2 = 3.446 × 10–6–1.03 × 10–2). Drying of sweet potato was predominantly in the falling rate period. The temperature dependence of the diffusion coefficient (Deff) was described by Arrhenius relationship. Deff increased with increasing thickness and air temperature. Deff of fresh and blanched sweet potato slices varied between 6.36 × 10–11–1.78 × 10–9 and 1.25 × 10–10–9.75 × 10–9 m2 s–1, respectively. Activation energy for moisture diffusion of the slices ranged between 11.1 and 30.4 kJ mol–1.  相似文献   

18.
猕猴桃热风干燥与冷冻干燥的实验研究   总被引:4,自引:0,他引:4  
本研究对真空冷冻干燥和热风干燥猕猴桃切片进行了对比实验,比较了不同冷冻干燥工艺和热风干燥工艺下猕猴桃VC损失率和干燥速率。实验发现热风干燥实验中,厚度、温度和对流情况三个因素对干燥速率和VC损失率两个指标都有显著影响(p<0.01)。最佳猕猴桃热风干燥工艺条件是:猕猴桃切片厚度取中间值6mm,温度取高值70℃,对流情况取加风。冷冻干燥实验中,厚度、一次干燥温度对干燥速率有显著影响(p<0.05),冻结速率无显著影响。厚度、一次干燥温度和降温速率对VC损失率有显著影响(p<0.05)。最佳猕猴桃真空冷冻干燥工艺条件是:猕猴桃切片厚度取中间值8mm,一次干燥温度-10℃,冻结降温速率取快速冻结。热风干燥的平均干燥速率远远大于冻干实验结果。冷冻干燥的VC损失率大大小于热风干燥过程。  相似文献   

19.
为了探索熟化甘薯片微波干燥特性,提高熟化甘薯片干制品质及干燥效率,研究不同微波功率、装载量与切片厚度对于熟化甘薯片微波干燥特性及能耗的影响,对熟化甘薯片进行了微波干燥试验。结果表明:熟化甘薯片的微波干燥可分为加速、恒速和降速三个阶段。微波功率与加载量对熟化甘薯片的干燥影响较大,微波功率越大,装载量越小,熟化甘薯片的干燥速率越快,干燥时间越短。采用4种常见的薄层干燥模型对微波干燥过程进行拟合,结果表明Page模型是最适合描述熟化甘薯片微波干燥过程中水分变化规律的薄层干燥模型。在微波功率200~600 W,装载量200~400 g,切片厚度6~10 mm范围内,熟化甘薯片的微波干燥能耗为2.8235~5.6289 kJ/g。研究结果可为熟化甘薯片微波干燥工艺提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号