首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对主要采用海藻酸钠-壳聚糖固定化碱性蛋白酶做了研究。在各项单因素试验基础的上,以固定化酶的酶活回收率为指标,采用响应面优化方法确定固定化碱性蛋白酶的最优条件。得到的最佳条件为,海藻酸钠浓度为3.00%,游离酶稀释倍数10.09,交联时间1.00 h,壳聚糖浓度3.76%,氯化钙浓度3.35%,响应面最优值为70.44%±1.03%。该固定化碱性蛋白酶的最适p H为10,最适温度为65℃,制得的固定化酶的热力学稳定性及酶学性质都比较好,在重复使用5次后酶活力仍可保持在65%。  相似文献   

2.
以粉末状壳聚糖为载体 ,采用吸附 -交联的方法将 α-葡萄糖苷酶固定化。最适固定化条件研究表明 ,0 .1 g壳聚糖与 2 4 ,0 0 0 U(0 .0 8ml) α-葡萄糖苷酶进行固定化 ,在p H6.0条件下 ,室温吸附 6h,然后与 3.5%的戊二醛在 45℃交联 6h,可得到固定化酶的活力为 1 4,30 0 U,酶活力回收率为59.6%。通过实验发现 ,与游离酶相比 ,固定化酶的最适 p H向酸性方向移动 0 .5p H单位 ,为 p H4.5;最适作用温度达到70℃ ,比游离 α-葡萄糖苷酶提高 5℃ ;酸碱稳定性、热稳定性及贮存稳定性均有较大提高 ;在 60℃操作半衰期为 1 68h  相似文献   

3.
对采用海藻酸钠固定化碱性蛋白酶的方法和酶学性质进行了研究。在单因素实验基础上,采用响应面优化方法确定固定化的最优条件,得到的最佳条件为:海藻酸钠浓度3.1%,pH9.4,CaCl2浓度3.0%,游离酶添加量10000U/g,时间1.8h,固定化酶活力可达5518U/g。固定化酶的最适pH为10,最适温度为60℃,制得的固定化酶的热力学稳定性和操作稳定性较好。此外,固定化酶重复利用5个循环后酶活力仅降低40%。  相似文献   

4.
利用海藻酸钠和壳聚糖两种固定化载体对三种β-半乳糖苷酶(Maxilact酶、Lactozym酶和来源于米曲霉的β-半乳糖苷酶)进行固定化,研究温度和p H对酶活力的影响,游离酶和固定化酶水解牛奶中乳糖制备低乳糖牛奶,以及固定化酶的重复利用性。结果表明:与游离酶相比较,固定化酶在最适反应温度、最适反应p H、乳糖水解和重复利用性方面均有提高,表现出良好的稳定性。相比之下,壳聚糖固定化酶比海藻酸钠固定化酶的效果好,其中壳聚糖固定化Maxilact酶效果更为突出,该酶的最适反应温度为60℃,最适反应p H为7.0,在相同加酶量的条件下水解牛奶2 h后,乳糖水解率达99.93%,重复利用5次后,乳糖水解率仍能达到99.28%,重复利用性高,可以减少成本。此次研究为利用固定化酶工业化生产低乳糖牛奶奠定了一定的基础。  相似文献   

5.
以复合修饰的纳米超顺磁性Fe3O4颗粒聚集体为载体固定化α-淀粉酶,比较分析固定化α-淀粉酶及游离α-淀粉酶的酶学性能。研究固定化及游离α-淀粉酶的最适温度、最适p H、操作稳定性及基本动力学等。结果表明,固定化α-淀粉酶最适p H为7,最适温度为60℃。固定化α-淀粉酶与游离α-淀粉酶相比,具有更好的温度和酸碱的耐受性。固定化α-淀粉酶重复催化反应10次,相对酶活力仍剩余72.09%,重复操作的半衰期为18.97次,具有良好的操作稳定性。固定化α-淀粉酶的米氏常数Km值为45.31 mg/m L,亲和性弱于游离α-淀粉酶。  相似文献   

6.
对谷氨酸棒杆菌(C.glutamicum)来源的谷氨酰胺合成酶进行腺苷酰化位点定点突变,并在大肠杆菌中进行异源表达,得到的重组酶活为6.215 U/mg。分离纯化重组突变酶后,对其固定化条件及固定化酶的性质进行研究。结果得到固定化条件为:以LX-1000EP树脂作为固定载体,载体量0.176 g/U、p H值8.0、温度30℃、吸附时间16 h。固定化酶活力达到3.658 U/g,酶活回收率达到67.17%。重组酶固定化后,反应最适温度没有变化,最适p H略向碱性偏移,储藏稳定性提高,转化谷氨酸生产谷氨酰胺的水平与游离酶相当,对50 mmol/L谷氨酸的转化率为92.83%,为酶法生产谷氨酰胺后续研究提供了参考。  相似文献   

7.
ARTP诱变选育高温蛋白酶高产菌株及其酶学性质研究   总被引:1,自引:0,他引:1  
以高温环境土样中筛选的产高温蛋白酶菌为出发菌株,利用常压室温等离子体诱变技术选育出一株高产突变株Bacillus licheniformis TP1-5,产酶活力达到33200U/m L,为出发菌株的1.56倍。通过乙醇沉淀和阴离子交换层析两步纯化,获得电泳纯的高温蛋白酶。酶学性质研究表明,该蛋白酶为高温碱性丝氨酸蛋白酶,酶的最适p H为10.0,最适反应温度为60℃,具有较好的p H稳定性和热稳定性;对离子型和非离子型表面活性剂均具有很高的耐受性,为进一步开发应用奠定了基础。  相似文献   

8.
本研究利用新型交联剂京尼平制备了枯草杆菌碱性蛋白酶交联聚集体(BAP-CLEAs)。以酶活回收率为指标,确定了BAP-CLEAs制备的最佳条件为:交联剂质量浓度0.50%,交联温度35℃,交联时间12 h,此时BAP-CLEAs的酶活回收率为55.04%。采用扫描电镜及红外光谱对BAP-CLEAs进行表征,结果证明枯草杆菌碱性蛋白酶在京尼平的作用下成功交联。与游离酶相比,BAP-CLEAs的最适p H值向碱性方向偏移,由9.4变为10.3,在较宽的p H范围和温度范围内保持较高的酶活。另外,在2%浓度的酪蛋白底物中重复使用5次后,BAP-CLEAs还能保持86.42%的酶活性。以上催化特性的结果表明,枯草杆菌碱性蛋白酶在京尼平的作用下可成功交联形成酶聚集体,且该交联酶聚集体具有比游离酶更优越的p H稳定性、温度稳定性和重复使用稳定性,有良好的工业应用前景。  相似文献   

9.
目的:本文以新鲜水牛奶为原料,研究木瓜蛋白酶、中性蛋白酶及碱性蛋白酶复合酶解、混合酶解水牛奶的作用,比较不同水解方式的作用效果;并采用凝血酶滴定改进法测定水解液抗凝血活性。方法:分别进行三种蛋白酶单因素水解实验,确定各种酶的最适水解条件;在此基础上进行复合酶解与混合酶解实验,测定水解度和抗凝血活性。结果:木瓜蛋白酶的最适水解条件为:水解温度60℃、水解时间2.0 h、p H5.0、料水比1∶2(v/v)、酶用量6000 U/(m L底物);中性蛋白酶的最适条件为:水解温度40℃、水解时间3.0 h、料水比1∶2(v/v)、p H6.0、酶用量6000 U/(m L底物);碱性蛋白酶的最适条件为:水解温度50℃、水解时间4.0 h、料水比1∶2(v/v)、p H8.0、酶用量6000 U/(m L底物)。复合酶解法制备的水解液其抗凝血活性均高于混合酶解,最高抗凝血活性为52.0 ATU/m L。结论:本实验条件下,加酶组合为"中性蛋白酶-木瓜蛋白酶-碱性蛋白酶"的复合酶解制备的水解液具有最高的抗凝血活性,即52.0 ATU/m L。  相似文献   

10.
以磷酸改性花生壳为载体固定α-淀粉酶,研究改性后的花生壳吸附固定α-淀粉酶的最优固定化条件以及固定化酶的酶学性质。试验结果表明:用磷酸溶液对粉碎的花生壳颗粒进行浸泡处理来改性,研究出酶固定化最优条件是:酶液/载体比11∶1(m L/mg),缓冲液p H6.0,固定时间8 h和温度35℃。经3次平行试验,所得实际固定化酶活力平均值为27 980 U/g。对游离酶和固定化酶部分酶学性质比较,得出改性固定化后酶的最适反应p H、温度有所改变,为p H=6.0,温度45℃,其储存时间、操作稳定性和耐热性比游离酶更好。  相似文献   

11.
以D-101、AB-8和S-8三种大孔树脂为载体,进行黑曲霉脂肪酶的固定化研究。根据脂肪酶的固定化率及活力回收率,确定D-101为固定化载体。经响应曲面法优化得脂肪酶的固定化工艺:以5 g经预处理的D-101为载体,加入9.0 m L酶液(20 mg/m L),p H 7.6,39℃下吸附4.3 h,脂肪酶固定化率为95.11%,固定化脂肪酶活力回收率为101.36%。固定化酶最适反应温度升高2℃,最适p H不变,固定化脂肪酶的酸碱稳定性和热稳定性均优于游离酶。  相似文献   

12.
游离果胶酶和固定化果胶酶的酶学性质   总被引:12,自引:3,他引:9  
研究游离果胶酶和固定化果胶酶的酶学性质,结果表明,游离酶的最适温度为55℃,最适pH为4.0,明胶固定化酶的最适温度为60℃,最适pH为3.5,固定化酶的稳定性比游离酶更好,底物与固定化酶的亲和力增强。  相似文献   

13.
以壳聚糖为载体,戊二醛为交联剂,采用吸附交联法对黑曲霉(Aspergillus niger)β-葡萄糖苷酶进行了固定化。考察了固定化pH、戊二醛含量、吸附时间、交联时间和壳聚糖微球加入量等对固定化酶活力回收率的影响,在单因素试验的基础上,采用正交试验设计确定最佳固定化条件为固定化pH 5.0、戊二醛含量3.0%、吸附时间12 h、交联时间2 h、壳聚糖微球加入量0.91 g/IU,此时固定化酶活力回收率达到87.0%。固定化和游离β-葡萄糖苷酶的最适p H值均为4.2,最适温度分别为65℃和60℃,固定化酶具有更高的耐酸碱性和热稳定性。  相似文献   

14.
采用中空壳聚糖作为载体,通过双功能试剂戊二醛作偶联剂,将碱性蛋白酶连接到中空壳聚糖,制备固定化碱性蛋白酶。研究固定化碱性蛋白酶的部分性质及水解麦胚蛋白质条件。实验结果显示,1.5% 戊二醛溶液活化的壳聚糖偶联1mg 碱性蛋白酶,酶催化相对活性可达90%;固定化酶最适pH 值为9.5,最适反应温度约65℃,催化水解麦胚蛋白质的水解率达16.5% 约需10min;固定化酶与麦胚蛋白质的比达到1:5 时,一次性获取含降血压肽水解物质的得率为15.6%。  相似文献   

15.
α-半乳糖苷酶是解决大豆制品食物不耐受的关键酶,但其活性不高、耐热性较差。文章使用海藻酸钠和壳聚糖2种固定化载体,研究了固定化后的α-半乳糖苷酶的最适p H、温度及水解大豆低聚糖的最适酶底比和重复使用效果。实验结果表明,游离酶的最适p H为4.0,最适温度为50℃,水解8.0 h时的大豆低聚糖水解率为79.28%,添加量为5 U/20 m L时,大豆低聚糖的水解率为51.88%;海藻酸钠固定化酶的最适p H为7.0,温度为45℃,保存52 d后相对酶活为(88.10±0.0029)%,水解8.0 h后大豆低聚糖的水解率达到100%,酶底比为5 U/20 m L时,大豆低聚糖的水解率为96.86%,重复使用5次后大豆低聚糖的水解率为59.70%;壳聚糖固定化酶的最适p H为4.0,温度为60℃,保存31 d后相对酶活为(58.85±0.00058)%,水解8.0 h后大豆低聚糖的水解率达到100%,酶底比为5 U/20 m L时,大豆低聚糖的水解率为97.93%,重复使用5次后大豆低聚糖的水解率为99.33%。与游离酶相比,固定化后的α-半乳糖苷酶展现了良好的稳定性和重复使用效果。  相似文献   

16.
从7种大孔型离子交换树脂中筛选出固定化效果最好的弱碱性苯乙烯系阴离子交换树脂D301-G,通过先吸附后交联的方法对精氨酸脱亚胺酶进行固定化条件及固定化酶性质研究。经单因素实验,结果表明,最佳固定化条件为每克树脂加入156 U精氨酸脱亚胺酶液,p H4.0,28℃条件下吸附4 h后,在4℃冷却,加入戊二醛溶液至体系内戊二醛体积分数为0.07%,4℃下交联4 h,最优条件下固定化酶活回收率可达85%以上。固定化酶的最适温度和p H分别为50~60℃和5.0~5.5,较游离酶具有更高的温度稳定性,同时固定化酶的米氏常数Km值比游离酶高。固定化酶在重复使用8次后仍保留57.7%的酶活,表明该固定化酶具有较好的操作稳定性,可为连续生产瓜氨酸提供技术依据。  相似文献   

17.
以水解度为考察指标,在单因素实验的基础上,利用正交试验对碱性蛋白酶水解扇贝边的条件进行了优化,并且对在最适酶解条件下制得的酶解液的抗氧化活性进行了研究。结果表明:碱性蛋白酶酶解扇贝边的最适条件为,[S]/[E]为12、温度为60℃、酶解时间为240 min、p H值为11。在最适酶解条件下制得的扇贝边酶解液对DPPH和ABTS+自由基均具有显著的清除作用,且表现出一定的量效关系。  相似文献   

18.
利用海藻酸钠固定化蛋白酶,探求其对牛奶过敏原αs1-酪蛋白的特异性降解。以固定化酶的活力回收率为指标,探究了固定化的条件、固定化酶的部分性质以及固定化酶在去除牛奶过敏原蛋白的应用。结果表明:最优固定化条件为,海藻酸钠质量分数为4.0%,Ca Cl2的质量分数为3.0%,固定化时间0.5 h,固定化酶量为V(海藻酸钠)∶V(酶液)为1∶3,固定化效率达到67.5%;固定后的酶最适反应温度70℃,最适反应p H 10.0,连续使用6次后剩余酶活达到40.0%以上;将固定化酶作用于2.0%脱脂奶粉溶液中,60℃条件下反应25 min过敏原αs1-酪蛋白得到特异性降解。  相似文献   

19.
为了降低不溶性载体固定化对酶催化效率和回收利用的影响,本文作者采用智能性聚合物Eudragit S-100对猪胰脂肪酶进行了固定化修饰。Eudragit S-100主要由甲基丙烯酸和甲基丙烯酸甲酯共聚而成,具备p H响应的可溶可逆性。结果显示:活化后的Eudragit S-100树脂能够与脂肪酶进行共价结合,在15℃条件下反应6 h后,脂肪酶的平均氨基修饰率约为52.4%;荧光光谱测试表明固定化修饰使得脂肪酶分子肽链发生了一定折叠,脂肪酶的结构较修饰前更为紧凑。固定化后脂肪酶的最适温度保持不变,最适p H向碱性方向移动,总体上表现出更好的稳定性。此外,固定化脂肪酶具备p H响应的可溶可逆性,能够重复使用,经过5次重复使用后,酶活保留仍有45%左右。  相似文献   

20.
固定化脂肪酶性能研究及在洗毛中的应用   总被引:1,自引:0,他引:1  
利用硅藻土吸附法对解酯假丝酵母发酵产生的脂肪酶进行了固定化,研究了固定化酶和游离酶的酶学性质,以及用固定化脂肪酶对羊毛进行生物酶法洗毛。结果表明:固定化酶比游离酶的最适作用温度提高了5℃,最适作用pH值向碱性方向移动了0.5个单位,热稳定性和pH值稳定性有了大幅度提高。在固定化酶的最适作用pH值下,得到最佳的洗毛条件为:温度45℃、浴比1∶35、时间20 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号