首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纤维素酶预处理糙米发芽工艺优化   总被引:3,自引:1,他引:2  
为解决发芽糙米蒸煮后口感差的问题,提出酶溶液浸泡糙米提供发芽条件的同时适当降解皮层粗纤维预处理工艺.研究酶浓度、酶解温度以及酶解时间对糙米发芽率及发芽糙米硬度的影响规律,采用二次旋转组合试验方法设计试验.并以GABA含量为考核指标,将酶预处理工艺与传统浸泡工艺进行了对比试验.结果表明:试验因素对糙米发芽率及发芽糙米硬度变化影响显著;酶预处理工艺优化参数组合为:酶浓度为0.4mg/mL、酶解温度为33℃和酶解时间为110min,在此条件下,糙米发芽率可达到传统浸泡处理的90%以上,其硬度降低14.1%.最优酶解条件下得到的发芽糙米GABA含量略低于未经酶浸泡得到的发芽糙米GABA含量.并通过扫描电镜分析证实了发芽糙米皮层粗纤维降解是其硬度下降的原因.  相似文献   

2.
在相同的反应温度和反应时间的条件下,以水溶性物质含量为指标,探讨了糙米在发芽及糙米粉状态下内源酶的酶解反应对食用品质的影响。试验结果表明,发芽糙米和糙米酶解粉的水溶性物质总量、水溶性粗蛋白质含量均比糙米原粉高;发芽糙米和糙米酶解粉的米粉糊液稳定性增强,而糙米酶解粉的增加效果明显高于发芽糙米,显示着内源酶酶解效果在糙米粉状态下优于整粒的发芽糙米。  相似文献   

3.
研究双螺杆挤压对发芽糙米重组米复水性能、营养成分及糊化特性的影响,随后以发芽糙米重组米为原料制备方便米饭,研究蒸煮和干燥工序对发芽糙米重组米方便米饭食用品质的影响。结果表明:螺杆转速120 r/min,三、四区挤压温度120℃、物料含水量20%时,发芽糙米重组米复水率最高,且糊化特性优于发芽糙米;相比于发芽糙米,发芽糙米重组米总淀粉、直链淀粉和可溶性蛋白含量下降,总蛋白、粗脂肪、纤维素和γ-氨基丁酸含量几乎不变。米水比1∶1.3、蒸煮30 min时,方便米饭的感官评分最高,且硬度和黏着性适中;蒸煮方便米饭经560 W-60℃微波热风组合干燥速度最快,此时得到的干燥方便米饭复水时间最短,复水率和碘蓝值最高。发芽糙米和发芽糙米重组米制备的方便米饭色泽和香味都较好,但发芽糙米重组米方便米饭的形态、口感和滋味更好。  相似文献   

4.
通过利用纤维素酶处理发芽糙米的方法降低发芽糙米硬度,以提高发芽糙米适口性。研究酶浓度、酶解温度以及酶解时间对发芽糙米硬度的影响规律,采用二次旋转组合试验方法设计试验。以硬度和GABA含量为考核指标,将酶处理工艺与未经酶处理工艺进行了对比试验。研究结果表明:各试验因素对发芽糙米硬度变化影响显著;酶处理发芽糙米工艺优化参数组合为:酶浓度为0.47 mg/mL、酶解温度为49.5℃和酶解时间为80 min时,所获得发芽糙米硬度接近白米硬度;最优酶处理条件下获得的发芽糙米GABA含量高于未经酶处理获得的发芽糙米GABA含量。并通过扫描电镜分析证实了发芽糙米粗纤维降解和皮层结构的破坏是其硬度下降的原因。研究结果可为实际生产中应用纤维素酶处理发芽糙米工艺提供理论依据。  相似文献   

5.
速食发芽糙米的研究   总被引:1,自引:0,他引:1  
以糙米为原料经过发芽处理,采用蒸煮糊化法制取速食发芽糙米。运用二次蒸煮糊化法进行糊化,将预蒸煮获得的速食发芽糙米进行浸泡和第二次蒸煮,糊化完成后进行干燥处理制成速食发芽糙米。结果表明:利用正交实验确定最佳糊化条件为:预蒸煮时间25min,浸泡温度60℃,浸泡时间35min,二次蒸煮时间30min;最佳干燥温度为80℃,时间为90min。  相似文献   

6.
发芽糙米的营养价值高于精白米,含有丰富的营养成分,其中膳食纤维、γ-氨基丁酸(GABA)、VB1及VB2含量分别是精白米的4.7倍、4.6倍、4.0倍及2.5倍;但发芽糙米表层含有大量的纤维素、半纤维素及果胶物质,纤维素酶预处理能部分降解这些物质,从而降低发芽糙米的蒸煮糊化温度,改善其食用品质,使其成为可接受的主食。本实验首先选用纤维素酶预处理发芽糙米,然后将发芽糙米与精白米复配蒸煮生产常温无菌包装方便米饭。实验结果表明,纤维素酶预处理的最佳条件为:酶浓度1.0U/mL,酶解温度50℃,酶解时间80 min;发芽糙米与精白米的最佳配比为20∶80~30∶70,发芽糙米与精白米复配米最佳蒸煮工艺为蒸煮米水比1∶1.2,蒸煮压力0.06 MPa,蒸煮时间15 min,此时得到的复配方便米饭感官评价分值最高。  相似文献   

7.
以糙米为原料,通过单因素和正交试验优化速食糙米粥的最佳工艺参数,探究真空微波干燥制备速食糙米粥的干燥和复水动力学方程。结果表明,最佳工艺参数为:浸泡温度55℃,浸泡时间20 min,糙米与水的比例为1∶8,真空微波干燥18 min,干燥功率2 000 W,制备的速食糙米粥的复水率最好,口感最佳,并获得其最适的干燥动力学和复水动力学方程。  相似文献   

8.
以红枣和发芽糙米为原料,对酶解条件进行研究,采用高温淀粉酶水解红枣和发芽糙米,经过正交试验,得到优化酶解条件为酶用量15U/g、温度85℃、时间65min和pH6.0。经过优化酶解工艺处理的红枣-发芽糙米饮料组织状态均匀,口感良好,具有红枣的特殊风味。  相似文献   

9.
方便粥具有很好的营养价值,有益于身体的健康,并且速冲即食,可以更好的节约时间,有很好的发展前景。试验采用黑米和糙米为原料的方便粥,采用测量复水率的方法,找到最佳制备方案:预干燥时间为14 min,预干燥温度为70℃,蒸煮时间为25 min。此时具有良好的感官和复水效果,产品外观较好。  相似文献   

10.
以发芽糙米和黑豆为主要原料,研究发芽糙米、黑豆复合保健饮料的加工工艺和配方。通过单因素试验、正交试验和感官评价,确定糙米浸泡条件为35℃、14h,发芽条件为30℃、24h。发芽糙米烘烤条件为200℃、10min,糊化加6 倍水量,发芽糙米的酶解条件为80℃、40min、加酶量0.4g/mL。将发芽糙米酶解液和黑豆原浆进行复配,制成的复合型保健饮料口味独特、口感细腻,兼具有发芽糙米和黑豆的营养价值。  相似文献   

11.
结合超声波和外源酶对糙米进行预处理,利用中心组合试验模型,以超声温度、超声时间、酶质量浓度3 个因素为自变量,糙米预处理后处理液中总糖含量、糙米发芽率、发芽糙米γ-氨基丁酸(γ-amiobutyric acid,GABA)含量为响应值,设计了三因素三水平的响应面分析试验,并对数据进行拟合和相关性分析。同时研究超声波辅助酶预处理对发芽糙米中GABA含量、总酚含量、内源淀粉酶活力以及发芽糙米糊化黏度、蒸煮后质构特性的影响。结果表明:超声辅助酶预处理的超声温度和超声时间对糙米发芽率和GABA含量均有显著的影响。通过响应面分析,超声波辅助酶预处理超声温度31.21 ℃、超声时间0.71 h、酶质量浓度0.28 g/L时,发芽率最高预测值为91.98%;超声波辅助酶预处理超声温度35.65 ℃、超声时间0.5 h、酶质量浓度0.22 g/L时,GABA含量最高预测值为38.25 mg/100 g。从发芽糙米的理化特性来看,超声波辅助酶预处理有利于GABA的富集,但不利于总酚的积累。超声波辅助酶预处理可以有效地提高内源淀粉酶的活力,相应地降低发芽糙米粉的糊化黏度以及发芽糙米蒸煮后的硬度。  相似文献   

12.
《粮食与油脂》2017,(8):61-64
以酶解紫薯汁和发芽糙米汁为原料,添加其它配料,制备紫薯-发芽糙米复合饮料,通过单因素试验和正交试验优化工艺参数。最佳酶解条件为α-淀粉酶用量2.5%、酶解温度65℃和酶解时间60 min;调配的最佳配方为紫薯汁和发芽糙米汁的质量比7∶3、糖用量6%、柠檬酸用量0.010%和羧甲基纤维素钠0.20%,此时得到的复合饮料品质最佳。  相似文献   

13.
以早籼发芽糙米、早籼米为主要原料,加入适量玉米淀粉制作富含γ-氨基丁酸发芽糙米米粉条。通过单因素试验和正交试验研究早籼发芽糙米与早籼米比例、玉米淀粉添加量、时效房复蒸温度、时效房复蒸时间对发芽糙米米粉条品质的影响。结果表明,发芽糙米与早籼米比例为7∶3 、玉米淀粉添加量为5%、时效房复蒸温度为 95℃、时效房复蒸时间为 12 min时,制备出来的米粉条品质最佳,米粉条中γ-氨基丁酸含量超过14 mg/(100 g)。  相似文献   

14.
采用不同蒸煮时间对发芽糙米进行处理,探索不同蒸煮时间对发芽糙米中生理活性物质的影响情况,结果表明:在不同的蒸煮时间下,发芽糙米中γ-氨基丁酸含量均有所增加、而植酸含量、谷维素含量均降低;其中,蒸煮20 min时,发芽糙米γ-氨基丁酸含量增加幅度最大,增加了66.31%;谷维素含量损失最小,降低了25.06%;植酸含量降低了17.11%;由于四种蒸煮条件对植酸含量变化影响均较小,因此,总体来看,蒸煮20 min对发芽糙米中生理活性物质的综合保留效果相对较好。  相似文献   

15.
通过发芽处理,糙米的食用品质及营养价值都有所提升。以小麦粉和发芽糙米粉为主要原料制作发芽糙米-小麦复合面条。通过单因素和正交试验,探讨了发芽糙米粉、水、食盐、羟丙基甲基纤维素对面条感官品质、质构和蒸煮品质的影响,确定了发芽糙米-小麦复合面条最佳制作工艺为:小麦粉58%、发芽糙米粉42%的100 g发芽糙米-小麦混合粉中,加入水46 g、盐1.0 g、羟丙基甲基纤维素0.6 g,此条件下制作的面条,表面光滑、适口性好、断条率低,具有很好的韧性,且有淡淡糙米香味。  相似文献   

16.
以糙米为主要原料制备富硒发芽糙米,以有机硒含量为指标,通过正交试验确定了富硒发芽糙米的最佳工艺条件为:发芽时间19 h,发芽温度32℃,亚硒酸钠浓度15 mg/L,得到有机硒含量为0.532 mg/kg。以葡萄糖当量为指标,通过正交试验确定了富硒发芽糙米的最佳酶解反应条件为:酶解温度85℃,酶浓度35μg/m L,酶解时间60 min。以富硒发芽糙米为主要原料,添加适量蔗糖、β-环糊精,采用单因素和正交试验设计,以产品感官评价为指标,确定富硒发芽糙米饮料的最佳工艺配方。结果表明:料液比为1∶6(g/m L),蔗糖添加量为8%,β-环糊精添加量为1.5%,加入0.06%黄原胶和0.10%海藻酸丙二醇酯。该饮料具有营养、保健的功能,色泽、香味、口感俱佳。  相似文献   

17.
以发芽糙米粉为原料,将水溶性指数(WSI)作为评价指标,考察了纤维素酶添加量、中温α-淀粉酶添加量、酶解温度和酶解时间对膨化发芽糙米粉WSI的影响。在单因素试验的基础上,采用Box-Behnken试验设计优化双酶预处理的工艺条件。试验结果表明,发芽糙米粉的最佳双酶预处理条件为纤维素酶添加量为29.00 U/g,中温α-淀粉酶添加量为17.00 U/g,酶解温度为51.00℃,酶解时间为40.00 min,所得膨化发芽糙米粉的WSI最高,为81.54%。表明纤维素酶和中温α-淀粉酶预处理协同挤压膨化可显著提高发芽糙米粉的冲调性。  相似文献   

18.
浸泡处理对发芽糙米蒸煮食用品质的影响   总被引:1,自引:0,他引:1  
探讨了浸泡处理温度、时间和pH对发芽糙米蒸煮食用品质的影响.结果表明,发芽糙米在50℃条件下浸泡后蒸煮可使出饭率、膨胀率和米汤固形物含量达最大值,分别为240.9%、269.2%和67.1mg/10 mL,γ-氨基丁酸含量在40℃浸泡处理时最高,随着浸泡pH上升糙米饭中γ-氨基丁酸含量呈下降趋势;经浸泡处理后的发芽糙米在蒸煮后口感能得到一定改善,米饭硬度和弹性分别降低262.6、0.1 g·s,黏着性、内聚性、咀嚼性分别增加112.7、0.1、11.8 g·s,在微碱性下浸泡的发芽糙米蒸煮后在感官品质和口感上有所提高,但由于γ-氨基丁酸的损失使糙米饭的营养价值下降.  相似文献   

19.
研究结合预糊化和外源酶对糙米进行处理,利用中心组合实验模型,以酶解温度、酶解时间、预糊化时间和酶的添加量4个因素为自变量,处理后糙米的蒸煮时间和感官评分为响应值,设计四因素三水平的响应面分析实验。同时研究酶解辅助预糊化处理对糙米基本组分以及糙米处理前后的热力学性质的影响。结果表明:酶解辅助预糊化处理的酶解温度、酶解时间、预糊化时间和酶的添加量对糙米的蒸煮时间和感官评分均有显著的影响。通过响应面分析及验证实验得最佳条件为:酶解温度为61 ℃,酶的添加量为2%,酶解时间为127 min,预糊化时间为12 min,此条件下蒸煮时间为22.39 min和感官评分为78.75分。酶解辅助预糊化处理显著降低了脂肪含量,有利于糙米的储藏。酶解辅助预糊化技术不仅改变了糙米的凝胶温度范围,而且使糙米更易糊化。  相似文献   

20.
以发芽糙米和汉麻仁脱脂粉为原料,通过酶解发芽糙米和熟化汉麻仁脱脂粉,调配少量增稠剂后,获得易消化、甜度适中、具有果仁芳香的发芽糙米汉麻仁速溶饮品。酶解发芽糙米的最佳条件为:β-淀粉酶添加量0.5g/100 mL、反应温度60℃、反应时间2.5 h;发芽糙米汉麻仁复合粉制备的最佳条件为:汉麻仁脱脂粉熟化温度120℃、酶解发芽糙米粉与熟化汉麻仁脱脂粉比例1︰1、β-环糊精添加量20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号