首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
酶法提取枸杞多糖的研究   总被引:16,自引:0,他引:16  
吴素萍  徐建宁 《食品科技》2007,32(8):114-117
研究了纤维素酶提取枸杞多糖的最佳工艺条件。以提取率为指标,分别考虑了加水量、酶解pH、酶解温度、酶解时间、加酶量对纤维素酶酶解反应的影响。试验确定了纤维素酶酶解工艺的最佳条件为加水量50mL、pH5.0、酶解温度50℃、酶解时间60min、加酶量0.5%。在这种条件下,枸杞多糖的得率为11.2%。  相似文献   

2.
为了优化纤维素酶与果胶酶水解提取辣木叶中蛋白质的提取工艺,以提取率为考察指标,运用单因素与正交试验研究了酶解温度、加酶量、pH、底物质量浓度与酶解时间5个因素对辣木叶蛋白质提取率的影响。结果表明:纤维素酶各因素对辣木叶蛋白质提取率影响的主次顺序为:酶解温度 > 底物质量浓度 > pH > 酶解时间 > 加酶量,最佳工艺条件为:酶解温度40℃、加酶量800 U/L、酶解pH5.0、底物质量浓度7.0 g/L、酶解时间70 min,在此条件下的提取率达到了43.85%。果胶酶各因素对辣木叶蛋白质提取率影响的主次顺序为:加酶量 > 底物质量浓度 > 酶解时间 > 酶解温度 > pH,最佳工艺条件为:酶解温度50℃、加酶量1400 U/L、pH4.0、底物质量浓度9.0 g/L、酶解时间50 min,提取率达到了32.26%。纤维素酶与果胶酶各因素对辣木叶蛋白质提取率的影响均达到了极显著水平(P<0.01)。在最佳工艺条件下,纤维素酶水解辣木叶提取蛋白质的效果优于果胶酶。  相似文献   

3.
采用超声波协同果胶酶提取黑木耳粗多糖,先加入底物质量分数1%的果胶酶,在pH=5.0,50℃酶解2 h,对黑木耳进行预处理。再通过正交试验,得到超声波辅助提取黑木耳粗多糖的最佳工艺条件为:超声波功率400 W,超声波时间7 min,料液比1∶80(g/mL),浸提温度90℃,浸提时间2 h,在此条件下得到黑木耳粗多糖提取率为19.84%。在相同条件下,该提取率高于热水直接浸提法和超声波辅助热水提取法得到黑木耳粗多糖的提取率。实验表明,采用超声波协同果胶酶提取黑木耳粗多糖是可行的。  相似文献   

4.
以黑木耳为原料,通过酶解与发酵联合处理,提升木耳中的还原糖含量和抗氧化能力,为黑木耳产品的开发利用提供理论基础。实验采用纤维素酶、果胶酶或复合酶处理黑木耳浆,在此基础上利用植物乳杆菌(L. plantarum)和发酵乳杆菌(L. fermentum)复合发酵,以还原糖含量为指标,通过单因素优化了木耳酶解过程中料液比、复合酶用量、酶解时间、酶解温度和酶解pH;再以1,1-二苯基-2-三硝基苯肼(DPPH)清除率为指标,优化了木耳酶解液在发酵过程中的发酵温度、接种量和发酵时间,最终利用响应面试验确定黑木耳发酵的最佳工艺条件。结果表明,按每克木耳浆计,在果胶酶与纤维素酶总加酶量3.2%(w/w),果胶酶与纤维素酶质量比为2:3(w/w),温度50 ℃,pH5.50,酶解时间3.5 h条件下酶解效果最佳,还原糖含量达到(6.94±0.24)mg/mL。在植物乳杆菌(L. plantarum)与发酵乳杆菌(L. fermentum)添加比例为1:1,发酵温度37 ℃,接菌量3%,发酵时间8 h条件下,木耳发酵液DPPH自由基清除率达到92.46%±3.22%。酶解和发酵联合处理的木耳浆中还原糖含量和抗氧化性能均得到明显提升。  相似文献   

5.
超声波协同复合酶法提取香菇多糖的工艺优化   总被引:1,自引:0,他引:1  
优化超声波协同复合酶法提取香菇中多糖成分的工艺。以香菇多糖提取率为评价指标,采用单因素试验和正交试验,确定最佳提取工艺参数。结果表明,超声波提取优化工艺条件为:料液比1∶15(g/mL),超声温度70℃,超声时间12 min。在此最佳超声提取条件下香菇多糖提取率为8.97%。在超声波优化的基础上,进行复合酶处理,最佳酶解工艺参数为:酶解时间50 min,复合酶(木瓜蛋白酶∶纤维素酶∶果胶酶=1∶1∶1,质量比)添加量3%,酶解温度60℃,酶解pH5.5,在此优化条件下香菇多糖提取率为12.46%。  相似文献   

6.
酶催化浸出米糠油的研究   总被引:1,自引:0,他引:1  
采用正交试验,对果胶酶和纤维素酶催化浸出米糠油条件进行了研究。结果表明:酶催化浸出米糠油最佳工艺为:先用果胶酶和纤维素酶酶解处理,料液比(W/V)比1:5,果胶酶用量1.5%,纤维素酶用量2.0%,pH5.0,酶解温度50℃,水解5h,再用正己烷浸提米糠油。经过纤维素酶和果胶酶酶解处理后米糠油提取率比单独溶剂浸提法提高了31.9%。  相似文献   

7.
利用果胶酶和纤维素酶组合处理矮地茶,优化总酚酸的提取工艺。采用单因素和正交试验,研究复合酶质量比、加酶量、pH、酶解温度和酶解时间对总酚酸提取率的影响。试验结果表明最佳工艺条件为:果胶酶和纤维素酶质量比2∶1,加酶量3%,酶解时间3 h,pH 4.0,酶解温度50℃。与单酶法、热水浸提法比较,复合酶法更利于矮地茶总酚酸的提取。  相似文献   

8.
以九资河茯苓为原料,多糖提取率为指标,利用纤维素酶、半纤维素酶、β-葡聚糖酶协同作用提取茯苓多糖。基于单因素和正交试验优化复合酶提取工艺条件,并评价茯苓多糖的体外抗氧化活性。结果表明,最佳工艺条件为纤维素酶、半纤维素酶、β-葡聚糖酶添加量分别为2.5%、2.5%、5.0%,酶解时间90 min、酶解温度50℃、pH 5.0。在此条件下,茯苓多糖提取率为6.13%,是水提法的4.17倍,其总抗氧化能力是水提法的2.9倍。该方法操作简单,条件温和,多糖提取率和抗氧化活性优势明显。  相似文献   

9.
旨在为米糠副产品的精深加工利用提供指导,利用碱性蛋白酶辅助碱溶酸沉法提取米糠蛋白,并进一步以纤维素酶纯化米糠蛋白,在单因素实验的基础上通过正交实验优化提取、纯化工艺条件。结果表明:米糠蛋白提取的最佳工艺条件为酶解pH 10.5、酶解温度50℃、料液比1∶10、酶解时间120 min、加酶量2.5%,在此条件下米糠蛋白提取率为75.2%;米糠蛋白纯化的最佳工艺条件为酶解温度50℃、酶解pH 5.0、酶解时间60 min、加酶量4%、料液比1∶10,在此条件下米糠蛋白纯度为81.6%,提取率为72.6%。采用此方法可以得到提取率和纯度均较高的米糠蛋白。  相似文献   

10.
该试验研究复合酶协同超高压法提取黑木耳多糖最佳工艺条件。以黑木耳多糖得率为指标,采用单因素试验和正交试验,确定最佳提取工艺参数。结果表明,复合酶提取最佳工艺参数为酶解时间50 min,复合酶(纤维素酶∶木瓜蛋白酶=1∶1,质量比)添加量3%,酶解温度50℃,酶解pH值6.5。在此条件下,黑木耳多糖得率为9.26%。经复合酶法优化后,再进行超高压法提取,最佳工艺参数为保压时间8 min,提取温度50℃,压力400 MPa,料液比1∶30(g/mL)。在此条件下,黑木耳多糖得率为12.23%。  相似文献   

11.
骆嘉原  孙凯峰  包怡红 《食品工业科技》2019,40(21):203-209,230
以黑木耳为原料,利用生物酶法进行多糖的提取,并研究其体外降血糖性能。以降血糖性能和黑木耳多糖得率为双指标,筛选最适复合酶体系,并通过正交试验确定最佳酶转化工艺条件。采用Sevag法脱蛋白、H2O2法脱色,对提取的木耳粗多糖进行精制处理。利用高效液相色谱法对多糖的分子质量分布进行分析,并通过其α-淀粉酶抑制率和葡萄糖透析延迟指数对多糖的降血糖性能进行分析比较。结果表明:综合考虑木耳多糖降血糖性能与多糖得率,选择糖化酶、木瓜蛋白酶、果胶酶作为木耳多糖生物转化的酶制剂,总加酶量700 U/g,三种酶配比1:1:1,料液比1:60、pH5.0、酶解时间1.5 h、酶解温度50 ℃时,在此条件下,木耳多糖得率32.57%,α-淀粉酶抑制率为26.72%。精制处理后,黑木耳多糖提取液的颜色由棕黄色变为淡黄色,脱色率为43.15%,多糖损失率为31.27%。酶解后多糖发生了部分降解,产生了大小不一的多糖片段。此外,酶解木耳多糖的降血糖性能优于非酶解水提多糖,其α-淀粉酶抑制率提高了10.09%;葡萄糖透析延迟指数30 min时提高了13.09%,60 min时提高了3.24%,表明经酶法生物转化的木耳多糖有很好的降血糖性能。本试验通过复合酶解法对木耳多糖进行生物转化,改善木耳多糖的生物活性,对木耳多糖在保健功能方面的利用与临床应用提供了理论依据。  相似文献   

12.
以黑木耳为原料,采用酶法进行前处理后用超声波辅助碱法提取黑木耳蛋白质,获得黑木耳蛋白质的最优提取工艺条件。以蛋白质得率为评价指标,进行单因素试验,并采用Box-Behnken响应面法优化黑木耳蛋白提取工艺。结果表明,纤维素酶和木聚糖酶混合酶解最佳前处理条件为:酶解温度50℃、酶解pH 4、酶解时间2 h、酶添加量(加酶量/木耳干质量)0.8%。黑木耳蛋白最佳提取条件为料液比1︰91(g/mL)、超声温度49℃、超声时间40min。最佳提取条件下黑木耳蛋白得率为4.84%。试验表明经酶法前处理后采用超声波辅助碱法能显著提高黑木耳蛋白质提取效率。  相似文献   

13.
为更好的开发利用黑木耳,提取其多糖,借助minitab统计软件,采用中心组合试验法对破壁酶提取黑木耳多糖的工艺条件进行优化,并在相同条件下,比较该酶与其它提取方法的多糖得率。结果表明,以提取温度、提取时间、液料比三因素为自变量,以多糖提取率为因变量,回归得到二次多项式模型,结果显著,拟合情况良好。模型校正决定系数为0.9989,相关系数为0.9979。通过对回归方程进行局部寻优分析,得到黑木耳多糖的最佳酶提工艺条件为:添加量400U/g,pH8.0,提取温度42℃、提取时间1.65h,液料比98mL/g。此条件下多糖提取率达11.78%,显著高于其他提取方法。  相似文献   

14.
以九华山黄精为原料,水为提取溶剂,采用超声波协同纤维素酶方法对其多糖和皂苷进行综合提取。通过单因素和正交实验研究了纤维素酶与底物质量比、超声时间、超声温度、浸提pH、超声功率对多糖和皂苷提取率的影响。结果表明:影响最显著的是纤维素酶与底物质量比,其次是浸提pH以及超声功率,超声时间和超声温度的影响相对较小。优化得出最佳提取工艺是纤维素酶与底物质量比1%,超声时间40min,超声温度55℃,浸提pH5.0,超声功率300W。此时的多糖和皂苷提取率分别是39.36%和11.69%。相比传统提取方法,大大提高了多糖和皂苷的提取率。  相似文献   

15.
采用微波协同酶法提取玉米须多糖并对其工艺进行优化。通过单因素试验和正交试验,确定微波协同酶法提取的最佳工艺条件:微波功率500W、微波处理时间2min、液料比30:1(mL/g)、纤维素酶用量1.5%、酶解温度50℃、酶解时间40min、pH5.0,在此工艺条件下,多糖提取率为8.12%。  相似文献   

16.
以恰玛古多糖得率为指标,在超声提取及复合酶酶解单因素实验基础上,采用响应面法探究超声协同复合酶分步提取恰玛古多糖的最佳工艺条件。结果表明,超声协同复合酶分步提取恰玛古多糖的最佳提取工艺为:液料比33:1 mL/g,超声温度62℃,超声功率250 W,超声提取43 min后加入2.5%的复合酶(纤维素酶:木瓜蛋白酶:果胶酶=1:1:1,质量比),酶解pH5.4,酶解温度50℃,酶解时间52 min,在此条件下,恰玛古多糖得率为12.62%±0.18%。超声协同复合酶提取恰玛古多糖的得率较高,且工艺简便易行,适用于恰玛古多糖的提取。  相似文献   

17.
为了最大限度地从竹荪孢子中提取多糖,且不破坏多糖的抗氧化活性,本文考察提取时间、提取温度、料液比、pH等因素对多糖得率及多糖活性的影响,在单因素实验的基础上,采用响应面法Box-Benhnken设计,优化棘托竹荪孢子多糖提取工艺。结果表明:综合提取效率和多糖活性等因素,得到竹荪孢子多糖提取的最适工艺参数为提取温度70 ℃、提取时间120 min、pH9、料液比为1:20。采用上述最优工艺条件进行多糖提取的实验,测得实际多糖得率为9.87%,在2~10 mg/mL范围内,孢子多糖对羟基自由基清除率的IC50为4.67 mg/mL。实验结果为下一步分离、纯化及鉴定竹荪孢子活性多糖提供基础和依据。  相似文献   

18.
茶树菇多糖具有多种药理生理功能,该文通过正交试验研究了水浴及木瓜蛋白酶酶解辅助提取茶树菇子实体多糖的最佳工艺。研究结果表明:水浴提取茶树菇子实体多糖料液比为1∶60,提取时间120min,提取温度为60℃时提取效果最佳,平均提取率为1.47%;木瓜蛋白酶酶解辅助提取茶树菇子实体多糖,料液比1∶80,2%的木瓜蛋白酶,pH值为5.0,酶解温度45℃提取效果最佳;用此工艺提取茶树菇多糖的平均提取率为3.08%。以t检验分析,酶解辅助提取法显著优于水浴提取法。  相似文献   

19.
以工业发酵产生的葡萄酒废酵母泥为材料,过筛法除去葡萄果皮、果籽等杂质后,以细胞破壁液蛋白质含量、多糖提取率为评价指标,通过单因素试验和正交试验对碱法破壁-酶法提取细胞壁多糖工艺进行优化,以期提高多糖提取率。结果表明,最佳工艺条件为细胞破壁碱(KOH)处理温度为60 ℃,碱(KOH)质量浓度为70 g/L,处理时间为1.5 h,80 kHz超声辅助;酶法提取多糖最佳工艺为酶作用温度50 ℃,酶解时间1.5 h,中性蛋白酶添加量0.3%,初始pH值7.0。在此优化条件下,葡萄酒废酵母多糖提取率为21.08%。  相似文献   

20.
加酶超声提取核桃抗氧化肽工艺优化   总被引:1,自引:0,他引:1  
实验利用脱脂核桃粕为原料,在加酶提取核桃抗氧化肽工艺基础上,采用超声辅助技术,研究了超声辅助加酶提取核桃抗氧化肽的最佳提取条件。以对DPPH自由基清除率为考察指标,在单因素实验基础上进行正交实验优化超声辅助加酶提取核桃抗氧化肽工艺。结果表明:加酶超声提取核桃抗氧化肽的最优工艺为:酶解时采用Alcalase2.4L碱性蛋白酶,料液比(核桃粕:缓冲液)1:20,[E]/[S]为13:500、pH9、酶解温度49℃的条件下酶解2h;超声功率150W,超声时间20min,超声温度50℃,在此条件下制备的核桃抗氧化肽对对二苯代苦味肼基自由基(DPPH·)的清除率达65.11%,抗氧化肽产率62.37%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号