首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对大麦β-淀粉酶水解蜡质玉米淀粉制备的β-限制糊精的颗粒形态、结晶性及特性进行研究。结果表明:β-限制糊精颗粒有棱角、呈不规则状,非结晶结构,β-限制糊精糊凝沉性弱,溶解度与膨润力、透明度和冻融稳定性均较原蜡质玉米淀粉有明显的改善,吸湿性比蜡质玉米淀粉略小。β-限制糊精具备的这些优良的性质和良好的加工性能,使其在食品加工业中有广阔的应用前景和很大的开发潜力。  相似文献   

2.
以玉米淀粉为原料,对其进行了辛烯基琥珀酸酐(OSA)酯化,并用α-淀粉酶水解,制备了酯化-酶解复合改性玉米淀粉。结果表明,酯化-酶解淀粉的透明度、溶解度较原淀粉有很大的提高,在葡萄糖当量浓度(DE)≤8的范围内,随DE值的增加,透明度和溶解度随之增大;冻融稳定性是酯化-酶解淀粉>酯化淀粉>原淀粉,凝沉性是酯化淀粉>酯化-酶解淀粉>原淀粉;乳化能力是酯化淀粉>酯化-酶解淀粉>原淀粉,但乳化稳定性是酯化-酶解淀粉>酯化淀粉>原淀粉。  相似文献   

3.
采用β-淀粉酶对交联蜡质大米淀粉进行处理,并对所得样品的粉体性质进行了详细研究。控制β-淀粉酶用量不变,改变酶处理时间,得到系列酶水解交联大米淀粉。综合考虑休止角、流速、松密度、轻敲密度和川北方程分析等因素,实验结果表明:β-淀粉酶水解交联蜡质大米淀粉在酶活65U/g,反应温度56℃,水解时间20h条件下所得样品的Carr’s指数为12.48%;Hausner比值为1.14;休止角为26.3°;在川北方程中a值为0.127,1/b为2.260;流出速度为6.37g/s;流动性和填充性优于其他样品和微晶纤维素,适合作为药物赋形剂替代微晶纤维素应用于直接压片。  相似文献   

4.
β-极限糊精的性质研究   总被引:1,自引:0,他引:1  
对β-淀粉酶水解玉米淀粉制备的β-极限糊精的性质进行了研究,发现其透明度、溶解度与膨润力、冻融稳定性、凝沉性、吸湿性均较原淀粉有很大改善.由于β-极限糊精这些优良的性质,其在应用前景上非常有开发潜力.  相似文献   

5.
目的酶法水解为芭蕉芋淀粉进行改性,提高芭蕉芋淀粉的应用价值,扩大于其在食品工业的应用范围。方法以芭蕉芋淀粉为原料,采用α-淀粉酶水解制备酶解淀粉,结合热失重(TGA)技术考察α-淀粉酶水解对芭蕉芋淀粉热稳定性和其他理化性质的影响。结果与原淀粉相比,酶解淀粉的溶解度和膨胀度、吸水度和吸油度增大;透光率和冻融稳定性降低;TGA结果表明,α-淀粉酶水解不改变芭蕉芋淀粉的组成成分,且酶解芭蕉芋淀粉的分解温度较高,表明其热稳定性增加。结论通过α-淀粉酶酶解法可制备满足工业需要的改良芭蕉芋淀粉。  相似文献   

6.
籼米多孔淀粉的研制   总被引:1,自引:0,他引:1  
试验以籼米淀粉为原料,通过α-淀粉酶水解籼米淀粉制备籼米多孔淀粉,探讨并获得了酶水解法制备籼米多孔淀粉的较优工艺:酶解反应温度为35℃,酶解反应时间为12 h,加酶量为酶解40%淀粉量,酶解体系pH值为4.0。并利用砂芯漏斗测定淀粉对液体的吸附能力,观察到大米多孔淀粉对液体的吸附能力大大强于大米原淀粉。  相似文献   

7.
以普通玉米淀粉为原料,利用β-淀粉酶和葡萄糖苷转移酶协同处理制备慢消化淀粉,并研究其理化性质。试验表明,原淀粉在β-淀粉酶加酶量为20 mL、反应时间为4 h,葡萄糖苷转移酶加酶量为20 mL、反应时间为12 h时,慢消化淀粉含量最高可达16.37%;所有经过双酶处理后的样品的淀粉-碘吸附结合物的最大吸收峰位置,随着慢消化淀粉含量的增加而偏移增大;差示扫描量热仪结果表明慢消化淀粉样品的糊化起始温度、峰值温度、终止温度、起始与终止温度差均有显著的升高,淀粉热稳定性增强,糊化变得困难;与玉米原淀粉A型结晶结构相比,所有样品的晶型消失,仅在2?=19.8°附近出现尖锐的衍射峰,2?=13.1?附近有一弥散峰;扫描电镜结果显示,酶解后的样品变成不规则碎片,不再具有原淀粉的颗粒结构。  相似文献   

8.
以蜡质玉米淀粉为原料,制备了β-极限糊精,研究了加酶量及酶解时间与产物流度关系的变化规律,以膜分离手段分离部分小分子麦芽糖,研究了产物溶解性、冻融稳定性、持水性及表观黏度等理化性质.结果表明,淀粉糊的流度在酶解前5h迅速降低,24h后产物流度趋于稳定.随着酶解程度的提高,β-极限糊精的溶解度提高,冻融稳定性和持水性降低,表观黏度下降,酶解物为假塑性流体.与未经膜分离的样品相比,膜分离后产物的持水性、冻融稳定性、表观黏度提高.  相似文献   

9.
陈春旭  郭元新 《食品科学》2015,36(13):69-73
以发芽苦荞为主要材料,研究苦荞发芽过程中淀粉理化特性(淀粉的溶解度、膨胀度、透明度、老化值、酶活力、冻融特性和碘蓝值)的变化情况,并对淀粉颗粒的显微变化进行分析。结果表明:在实验范围内随着发芽天数的增加,苦荞淀粉颗粒直径由4~5 μm增加到7~8 μm,颗粒形状大多数为卵形和多角形或不规则形,有极少数淀粉颗粒为球形。同时,发芽使荞麦粉中的部分淀粉颗粒水解而呈现多孔状,随着发芽时间增加,多孔淀粉颗粒增多。颗粒除了淀粉的溶解度、透明度和冻融稳定性下降以外,其他各指标均表现增加的趋势。  相似文献   

10.
淀粉酶酶解大米淀粉制备低DE值脂肪替代物   总被引:2,自引:2,他引:0  
采用酶法制备低DE值脂肪替代物,比较高温α-淀粉酶,中温α-淀粉酶,β-淀粉酶和糖化酶酶解大米淀粉制备的脂肪替代物-麦芽糊精的性质.结果表明,高温α-淀粉酶最适合用于制备低DE值麦芽糊精,其最佳制备工艺参数为酶用量3mL,pH6.2,酶解温度95℃,酶解时间10min.该条件下样品的流变试验结果表明,DE值在3左右的麦芽糊精形成凝胶时相应的凝胶温度为73.6℃.  相似文献   

11.
采用不同酶处理方法对所制备的抗性糊精进行酶解,并考察不同酶处理对抗性糊精消化性的影响。结果表明,抗性糊精样品经α-淀粉酶、葡萄糖淀粉酶和转苷酶作用后抗性含量比原样品降低;经α-淀粉酶处理后再经β-淀粉酶、真菌淀粉酶或不经过其他酶处理再经转苷酶处理的样品,其抗性含量比原样品有所提高;经α-淀粉酶和转苷酶处理后抗性含量最高可达68%。抗性糊精经过酶水解后相对分子量均会降低,样品经不同的酶处理后,其水解产物的相对分子量相差不大。  相似文献   

12.
以冻融稳定性、膨胀度和溶解度为指标,研究G4淀粉酶、β-淀粉酶处理对小麦淀粉老化特性的影响。结果表明G4淀粉酶和β-淀粉酶对小麦淀粉老化均有显著的抑制作用;两种酶的抗老化效果之间无显著差异,且二者复配无显著增效作用。在单因素试验的基础上,采用响应面法优化β-淀粉酶的酶解工艺得到最优工艺条件为酶解时间30min、酶解温度52.5℃、加酶量0.13%,在此条件下,与对照相比酶解处理小麦淀粉的析水率降低32.60%、溶解度升高10.54%、膨胀度升高44.45%。  相似文献   

13.
摘 要: 目的 研究麦芽三糖酶对大米淀粉回生性质的影响。方法 以不同麦芽三糖酶添加量(0、200、300、400、500、600 U)水解大米淀粉, 利用差示扫描量热仪、X射线衍射仪测定酶解产物的回生性质和重结晶性质, 并利用凝胶色谱分析系统分析酶对淀粉分子结构的影响。结果 麦芽三糖酶酶解大米淀粉, 随着水解程度增加可显著降低其4℃储藏14 d后的回生焓、相对结晶度以及分子尺寸, 显著提高脱支大米淀粉酶解产物中聚合度(degree of polymerization, DP)<9的极短链所占比例; 淀粉水解率≥25.96%后, 实验条件下未能检测到回生焓和重结晶峰。结论 麦芽三糖酶酶解大米淀粉后可有效抑制酶解产物的回生, 当淀粉水解率≥25.96%, 大米淀粉酶解产物的回生被完全抑制, 这主要是因为支链淀粉的外链被水解生成具有大量DP<9的极短链的分支糊精,。本研究可为麦芽三糖酶应用大米淀粉制品的酶法回生控制提供理论参考和技术依据。  相似文献   

14.
以蜡质大米淀粉为研究对象,采用动态超高压微射流进行处理,研究不同压力对蜡质大米淀粉理化性质(淀粉粒径、溶解度、膨胀度等)的影响.结果表明:动态超高压微射流处理后淀粉颗粒粒度减小,经过160MPa处理后,平均粒径为0.43μm;经过160MPa处理后,比表面积达1.271123m2/g;蜡质大米淀粉的溶解度和膨胀度随着处理压力的增大而显著增大.  相似文献   

15.
以4种不同链/支比含量的玉米淀粉为原料,酸解处理不同时间,以酸解玉米淀粉的形貌特性、冻融稳定性、膨胀度、溶解度、晶体性质为指标衡量不同酸解时间对玉米淀粉结构性质的影响。结果表明:4种玉米淀粉酸水解程度的顺序为:蜡质玉米普通玉米淀粉G50G80。酸解后,同品种的4种玉米淀粉的析水率随着酸解天数的增加而增加;溶解度增加,膨胀度降低。酸解并未改变淀粉的晶型,随着酸解时间的延长,蜡质玉米淀粉和普通玉米的相对结晶度先增大后保持不变,G50和G80的相对结晶度随着酸解时间的增加而增大。表明酸解对低直链淀粉(蜡质玉米淀粉和普通玉米淀粉)的结构、性能影响最大。  相似文献   

16.
以蜡质玉米淀粉为原料,辛烯基琥珀酸酐(OSA)为酯化剂,β-淀粉酶为酶解剂,制备了不同分子量辛烯基琥珀酸蜡质玉米淀粉酯(OSAS),并测定了其理化特性。结果表明:不同分子量(1.0×104~2.0×105 Da) OSAS的黏度在0.0035~0.0010 Pa·s范围内随分子量下降显著(P<0.05)降低,糊透明度自28.6%降低至23.1%,凝沉性和膨胀度也均随分子量降低而下降;辛烯基琥珀酸酐对蜡质玉米淀粉的酯化作用主要发生在蜡质玉米淀粉颗粒表面,酶解处理不会引入新基团。本研究初步揭示了OSAS分子量与其理化性质间的相互关系。  相似文献   

17.
采用蜡质玉米淀粉为原料,辛烯基琥珀酸酐(OSA)为酯化剂,应用湿法工艺制备了辛烯基琥珀酸淀粉钠(SSOS)。使用耐高温α-淀粉酶对SSOS进行酶解处理,制备了蜡质玉米辛烯基琥珀酸麦芽糊精酯(MSSOS)。研究了OSA用量对SSOS取代度(DS)的影响;探讨了耐高温α-淀粉酶用量、酶解时间、淀粉乳浓度、酯化程度对MSSOS产品葡萄糖值(DE)的影响;并对具有不同DE值MSSOS在表观黏度、透明度、乳化稳定性等性能的差异进行了比较分析。结果显示:(1)SSOS的DS值随OSA用量的增加呈升高趋势;(2)随DS值的升高,SSOS的HLB值增大,亲水性加强、淀粉的糊化温度降低、峰值黏度升高;(3)MSSOS的DE值随α-淀粉酶用量的增加和酶解时间的延长而升高,SSOS的酯化程度对DE值影响不大;(4)随DE值的升高,MSSOS表观黏度降低,透明度增大;DE值高于11.5%后,乳化稳定性降低。  相似文献   

18.
以蜡质玉米淀粉为原料,在酸醇介质中制备淀粉微晶。对制得的不同水解率的蜡质玉米淀粉微晶进行了颗粒形貌、X射线衍射、DSC热稳定性分析,溶解度和消化性能的测定。结果表明:随着酸醇水解程度的增加,淀粉颗粒形貌逐渐呈片晶状,最终为碎片;淀粉颗粒的无定形区先被水解,结晶区后被水解,进而导致颗粒破裂;晶体形态仍为A型。与原淀粉相比,淀粉微晶的Tp和Tc均增大,糊化温度范围也有很大提高;不同水解率的淀粉微晶的热焓(△H)先减小后增大。淀粉微晶的溶解度随水解率的增加不断增大。酸醇水解蜡质玉米淀粉的水解率越高,其在in vitro模型中的消化产物也就越多,消化速度也越快。对于同一水解率的淀粉微晶,其消化速度随时间的延长先上升后下降。  相似文献   

19.
用α-淀粉酶和β-淀粉酶对米粉进行酶法水解,以还原糖含量为指标,采用响应面分析法得到大米粉的最佳酶解工艺:α-淀粉酶添加量为0.5μg/g,β-淀粉酶添加量为0.9 μg/g,酶解温度58.5℃,pH5.5,酶水解时间为2.5h.在此条件下,大米粉的酶解程度最高,DE值为49.77%,经过酶解后大米粉颗粒直径由20.63 μm降低到8.54 μm.  相似文献   

20.
羧甲基化反应对大米淀粉性质影响的研究   总被引:1,自引:0,他引:1  
以大米淀粉为原料,氯乙酸为醚化剂采用异丙醇溶剂法制备了不同取代度的羧甲基淀粉(DS 0.34~0.72),并对其理化性质如冻融稳定性、透明度、凝沉性、溶解度、膨胀度、糊化特性及其结构进行了研究。红外图谱结果表明,籼米淀粉分子上引入了羧甲基基团。通过扫描电镜(SEM)分析了羧甲基化对淀粉颗粒的形貌影响,其结果表明,羧甲基化对淀粉颗粒的结构造成了破坏,其结构破坏程度与取代度有关。羧甲基淀粉由于引入了羧甲基基团,凝沉性减弱,改性后的淀粉具有较好的冻融稳定性、较高的透明度、膨胀度和溶解度,且都随着取代度的增加而增加。此外,相对于原淀粉,羧甲基大米淀粉糊化温度明显降低,粘度升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号