首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
工业机器人末端工具中心点(TCP)是机器人实际的运动轨迹,TCP的标定效率和精度直接影响机器人的作业质量。针对机器人平面式作业工具TCP的快速、准确标定需求,提出一种基于双目视觉的标定方法。通过改变机器人末端工具位置,结合双目视觉系统对靶标点进行测量,并进行坐标转换计算,从而求解出TCP。搭建机器人TCP标定实验平台,通过对比实验,验证了方法的正确性和有效性,满足实际机器人平面式末端工具的TCP标定要求,避免了传统接触式标定方法存在的碰撞风险。  相似文献   

2.
为了解决机器人工具坐标系标定时标定精度不高、效率较低的问题,提出一种基于激光跟踪仪的工具坐标系快速标定方法。首先,分析机器人末端法兰盘的结构,根据法兰盘上各点的相对位置关系,利用激光跟踪仪及几何法原理进行工具坐标系的位置标定;其次,控制机器人沿工具坐标系的X轴和Z轴方向分别运动,根据工具坐标系和法兰末端坐标系的相对位姿关系进行工具坐标系姿态标定;最后,利用基于距离约束的工具坐标系标定方法和本文提出的几何法标定结果进行精度对比分析。实验结果表明几何法进行工具坐标系后机器人定位精度能达到0.692 mm,与距离约束法的工具坐标系标定精度相当;同时几何法不需要机器人运动,只需测量机器人末端的6个点就能实现工具坐标系的位置标定,且机器人末端更换新的工具后只需测量一个点就能实现新工具的位置标定。实验表明,几何法标定实验过程为3min,而距离约束法实验过程为8 min,标定效率提高了62.5%,说明该方法具有高效率和高精度的特点,能够满足高精度任务作业的实际需要。  相似文献   

3.
《机械》2017,(8)
为了使机器人适用于不同的领域,工业机器人工具中心点(Tool Center Point,TCP)默认在第六轴末端法兰盘端面的中心,生产中根据不同需求安装相应工具,同时需要对安装工具或夹具的工具中心点进行标定来建立工具坐标系,笔者结合常用的接触式"六点法",设计了一种提高标定精度、标定效率的自标定精度叠加方法,此标定方法仅依靠机器人自身系统,而不需借助任何辅助设备或仪器即可实现工具坐标的高精度、高效率的标定,且标定过程简单,易于操作、便于生产,解决了"六点法"自标定操作难度大、效率低及对操作者操作水平要求高等问题。  相似文献   

4.
基于MDH(Modified Denavit-Hartenberg)模型,建立自主研发的服务机器人单个关节误差模型,用空间两点间的距离误差衡量机器人的绝对定位精度,并结合建立的单关节误差模型,推导了基于距离误差的运动学标定模型。运用该标定模型不仅可以简化测量过程,还可以避免测量系统与机器人系统之间的坐标转换,从而提高测量精度。最后,结合服务机器人部分解耦的结构特征来制定实验测量点的选取方案,并使用三坐标测量机测量其末端位置。实验结果表明,机器人的绝对定位精度得到明显提高。  相似文献   

5.
在使用机器人的过程中,TCP标定是不可避免的环节之一,而且标定精度直接影响机器人的定位精度。传统的标定方法需要人工多次校准,效率低,精度差。针对此情况,提出一种基于超声波测距的TCP标定方法,利用超声波测距技术和坐标变换方法进行快速、准确地TCP值标定。该方法有效避免了人工校准带来的误差,通过实验证明该方法有效可行。  相似文献   

6.
考虑测量空间的机器人绝对定位精度标定   总被引:1,自引:0,他引:1  
相较于机床,工业机器人绝对定位精度较低,难以满足磨削等高精度加工工艺的需求,较大地限制了其应用拓展。针对该问题,本文重点考虑空间测量位置的优化与选择,提出了一种基于距离精度的机器人绝对定位精度标定方法。首先在空间测量位置对于测量精度影响分析的基础上,采用了雅克比矩阵条件数来定量描述机器人运动性能。结合机器人关节运动特征,分别给出了关节空间与末端笛卡尔运动空间内的机器人优化测量位置范围。然后采用MD-H运动学方法构建了机器人绝对定位精度误差模型,引入距离精度方法,通过距离误差计算避免了坐标系转换误差。最后基于KUKA机器人实验平台开展了标定实验,结果表明机器人平均绝对定位误差从标定前的1.191 mm降低到了0.096 mm,有效验证了方法的有效性。  相似文献   

7.
针对机器人末端抓持工件时,无法利用生成在工件上的轮廓点进行去毛边加工的问题,对机器人末端抓持工件在工具固定的情况下去毛边加工的方法进行研究,提出在确定工件加工轮廓与机器人末端TCP的固定位姿关系之后,将固定在机器人工作空间中的工具上一点设置为虚拟TCP,以该虚拟TCP为基准,将附着于机器人末端工件上的加工轮廓点映射成机器人工作空间中的虚拟轨迹点的方法。在给出工件上轨迹点与虚拟轨迹点的映射关系,完成虚拟TCP以及机器人末端TCP设置的基础上,在Fanuc机器人仿真软件Robo Guide中对该方法进行了运动仿真验证后进行了加工,测量了其刀具进给量。实验结果表明:利用该方法对机器人夹持的工件进行去毛边加工,完全满足生产加工的精度要求。  相似文献   

8.
在机器人辅助微创介入治疗手术过程中,需要解决医师、手术病人、医疗监测和治疗仪器等复杂多维障碍环境下,机器人辅助手术系统的精确空间定位难题.为此,研究提出了一种基于磁定位器的微创手术机器人空间定位方法.该方法通过手术三维磁场坐标环境与机器人坐标的配准,确定手术障碍环境中定位磁场与手术机器人操作末端之间的空间关系,从而快捷方便和精确可靠地迅速完成手术辅助机器人系统的术前自动标定.医学实验表明采用该方法,手术机器人的定位精度达到3mm,满足微创介入治疗肝癌的临床手术需求.  相似文献   

9.
为了提高工业机器人的定位精度,提出一种自标定算法,首先采用D-H参数模型对机器人进行建模,分析并建立D-H参数误差与机器人末端误差的函数,再设计一个可旋转的标定平台,使机器人去探测不同位姿下的标定平台上的两个标定点,最后采用PSO算法对不同位姿下标定平台两点间的绝对距离来实现对机器人D-H参数误差的辨识。该方法标定过程简单,数据获取方便,并且不依赖于高精度测量仪器。经实验证明,标定后位置精度提高了10倍以上,均方根误差相较于标定前有数量级上的提升,说明机器人标定后,各项误差与机器人实际误差高度一致,从而保障了机器人工作过程的精确性。  相似文献   

10.
为提高脑外科手术机器人绝对定位精度,提出了一种串联式六自由度手术机器人运动学参数标定方法。根据脑外科手术机器人应用环境,采用一种针对手术工作空间的机器人参数采集方式,通过非支配排序的带有精英策略的多目标优化算法(NSGA-Ⅱ),将运动学模型标定问题转换为基于距离误差的多目标优化问题进行计算。通过模拟手术环境完成机器人参数标定的测试实验,说明利用这种标定方法可有效降低手术机器人系统绝对定位误差(误差降低了75%),提高机器人局部工作区域的定位精度。  相似文献   

11.
几何参数建模是机器人标定的基础,直接影响机器人定位精度。为解决常用几何参数模型当机器人相邻两轴线垂直及接近垂直时存在奇异性,建立了基于方向矢量和连接矢量的零参考模型(ZRM),该模型不仅满足完备性与连续性要求,而且使用该模型计算机器人末端位置和姿态简单直观;建立了几何参数标定误差模型,通过使用LeicaAT960激光跟踪仪对Staubli TX60和ER10L-C10两种工业机器人末端大量位姿实测,经正交三角分解去除冗余参数,采用LM算法对几何参数误差辨识,并与基于MDH模型的标定结果比较,实验结果证实,采用零参考模型标定后机器人末端平均绝对定位精度提升75%~90%,明显高于采用MDH模型标定结果,该模型适于在有高精度定位精度要求工业机器人中推广。  相似文献   

12.
针对工业机器人工具中心点(TCP)的位置标定,提出了一种新的基于固定参考点的标定算法,该算法利用球心与球面点所在平面的投影约束关系建立两组过参考点的直线参数方程,解算参考点坐标,再结合机器人运动学位置约束关系实现了TCP标定。在此基础上,通过试验定量分析了取样点位置分布对标定结果误差的影响。该算法避免了非线性方程组的求解和系数矩阵病态问题,适用于4点及4点以上的各种TCP位置标定方法。  相似文献   

13.
摘要:几何参数建模是机器人标定的基础,直接影响机器人定位精度。为解决常用几何参数模型当机器人相邻两轴线垂直及接近垂直时存在奇异性,建立了基于方向矢量和连接矢量的零参考模型(ZRM),该模型不仅满足完备性与连续性要求,而且使用该模型计算机器人末端位置和姿态简单直观;建立了几何参数标定误差模型,通过使用LeicaAT960激光跟踪仪对Staubli TX60和ER10L C10两种工业机器人末端大量位姿实测,经正交三角分解去除冗余参数,采用LM算法对几何参数误差辨识,并与基于MDH模型的标定结果比较,实验结果证实,采用零参考模型标定后机器人末端平均绝对定位精度提升75%~90%,明显高于采用MDH模型标定结果,该模型适于在有高精度定位精度要求工业机器人中推广。 .txt  相似文献   

14.
一种基于平面精度的机器人标定方法及仿真   总被引:1,自引:0,他引:1  
研究了一种测量简便、成本较低的基于平面精度的机器人标定方法,该方法限定了机器人末端手爪在其工作空间的平面内运动。在机器人的平面运动过程中,由关节驱动器记录平面上各采样点处的关节值并将这些值作为标定数据,避免了使用其他测量工具的复杂测量过程。建立了相应的评价方程以描述机器人所得位姿数据对该平面的逼近程度;给出了对应具体误差参数的辨识雅可比矩阵的求解方法,得出基于该雅可比矩阵的参数误差,并将该误差反向代回机器人运动学求解过程;最后使用MATLAB下的机器人工具箱建立了两连杆机器人模型,对该方法进行了仿真验证,仿真结果表明该方法将机器人绝对定位精度提高了50倍。  相似文献   

15.
机器人工具坐标系标定就是确定工具坐标系相对于末端连杆坐标系的变换矩阵。研究了一种机器人工具坐标系标定算法。其中工具中心点(TCP)位置标定采用最小二乘法进行拟合;工具坐标系(TCF)姿态标定采用坐标变换进行计算。  相似文献   

16.
针对六自由度协作机器人在实际应用中,由于加工、装配、传动和磨损等多方面因素,导致绝对定位精度低的问题,提出一种基于机器人工具末端的运动学误差模型建立方法.在无外部传感设备的条件下根据所设计的标定板,基于最小二乘法和采集的多组机器人实际位姿误差辨识误差模型,对机器人运动学参数与其理论值间的偏差进行补偿.修改底层控制器中参数,修正由于机器人内部机构偏差引起的绝对定位精度误差,提高机器人运行位置精度.  相似文献   

17.
三维表面扫描机器人系统本体标定新方法   总被引:2,自引:1,他引:1  
提高三维表面扫描机器人系统的机器人本体定位精度是其用于制造加工质量控制的关键,提出一种基于三坐标测量机和非线性优化方法的机器人本体标定方法。该方法首先设计并加工一个测量转接件,测量转接件由3个标准球组成,将其安装于机器人的末端,利用三坐标测量机获得转接件上精确的球心坐标,并且通过串口获得机器人的6个关节角度值。而后建立机器人运动学本体标定的目标函数,确定所要优化参数的初值后,通过Levenberg-Marquardt优化方法得到机器人的实际D-H参数。将获得的实际D-H参数应用于修正后的机器人运动学模型,由未参与计算的验证点数据表明标定后的机器人绝对定位精度提高了一倍。  相似文献   

18.
一种基于位姿反馈的工业机器人定位补偿方法   总被引:1,自引:0,他引:1  
为了提高工业机器人的绝对定位精度,提出了一种基于末端位姿闭环反馈的机器人精度补偿方法。该方法通过激光跟踪仪测量实时跟踪机器人末端靶标点的位置来监测机器人末端的位姿,并通过对靶标点的实际位置和理论位置进行匹配获得机器人末端的位姿偏差。工业机器人系统与激光跟踪测量系统通过局域网进行数据通信,并根据位姿偏差数据对机器人末端的位姿进行修正。最后通过实验对基于末端位姿闭环反馈的机器人精度补偿方法进行验证,实验表明,经过位姿闭环反馈补偿后机器人末端位置误差最大幅度可以降低到0.05mm,姿态误差最大幅度可以降低到0.012°。  相似文献   

19.
一种利用标定板的机械臂DH参数标定方法   总被引:1,自引:0,他引:1  
提出了利用标定板对机械臂DH参数进行标定的方法,使末端执行器按顺序采样标定板的7个点,前3个点用于构建世界坐标系与机器人坐标系之间的关系,后4个点用于建立目标函数和误差方程。优化求解误差方程得到标定后的DH参数。最后通过重复定位精度验证该方法的有效性,使重复定位精度从4.68 mm提高至0.87 mm左右。该方法具有设备简单、操作简易等优点。  相似文献   

20.
基于机器人MDH模型,针对位置矢量误差建立了机器人模型参数误差辨识模型。利用激光跟踪仪测量机器人末端在基坐标系下一系列位置点,进而采用最小二乘法辨识出机器人模型参数误差。为充分验证辨识算法的准确性,在实验室自主设计的6R工业机器人进行仿真和实验。结果表明,文章的标定算法可以准确地辨识出机器人的模型误差参数,补偿后机器人的绝对定位精度得到明显的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号