首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
柴油机曲轴主轴承润滑性能分析   总被引:3,自引:1,他引:2  
基于弹性流体动力润滑(EHD)和轴承动力学理论,计及轴瓦、轴颈的粗糙度及曲轴和轴承座变形的影响,建立四缸内燃机主轴承的润滑分析模型。在此模型的基础上,分析轴承间隙、供油压力和轴承宽度等参数对内燃机主轴承润滑性能的影响。结果表明:第4轴承的最小油膜厚度较小,最大油膜压力较大,摩擦功耗最大,即具有较差的摩擦性能;为减少摩擦功耗,应在保证可靠的润滑性能的前提下,适当地增大轴承间隙、减小供油压力和减小轴承宽度。对第4主轴承进行优化分析,优化后的最小油膜厚度增大,最大油膜压力减小,摩擦功耗有所降低。  相似文献   

2.
基于弹性流体动力润滑、轴承动力学及平衡率计算理论,计入轴颈与轴瓦表面粗糙度、曲轴与轴承座弹性变形的影响,针对某大功率柴油机的曲轴系统,建立12缸V150柴油机主轴承的润滑分析计算模型,对12平衡重曲轴在不同平衡率下各主轴承的润滑性能进行分析,考虑轴承宽度、轴承间隙和供油压力等参数对平衡性较好的曲轴进行优化。结果表明:随平衡率的增加,最小油膜厚度先增加后减小,最大油膜压力和平均摩擦损失总功先减小后增大,平衡率80%的曲轴润滑性能较好,但主轴承MB5、MB6、MB7的最小油膜厚度均小于1μm;对其优化后各主轴承润滑性能均满足要求,且润滑性最差的主轴承MB7的最小油膜厚度增加19.7%,最大油膜压力减小11.8%。  相似文献   

3.
轴颈倾斜对内燃机主轴承润滑和磨损的影响   总被引:1,自引:1,他引:0  
建立内燃机主轴承热弹性流体动力润滑模型,考虑轴颈倾斜,以粗糙接触压力表征轴颈与轴瓦的磨损程度.通过对不同工况下主轴颈倾斜角度、粗糙接触压力等的计算,研究轴颈倾斜对主轴承润滑和磨损的影响.结果表明,轴颈不对中倾斜角度较小时,主轴承仍能够处于流体润滑状态;轴颈倾斜角度较大时,轴承处于边界润滑状态,出现偏摩擦磨损.转速和负荷对轴颈倾斜影响较大,高转速和满负荷时轴承的润滑不良,磨损较大.  相似文献   

4.
以内燃机曲轴主轴承为研究对象,基于Reynolds方程和Greenwood-Tripp微凸体接触理论,考虑曲轴倾斜和弹性变形,建立其弹流润滑模型,分析不同轴颈型线对主轴承润滑特性的影响。结果表明:不同轴颈型线对主轴承润滑特性的影响有着明显的差异,相比于无型线轴颈,轴颈型线为鼓型时,主轴承的最小油膜厚度增加了38.12%,最大油膜压力减小了32.73%,平均摩擦损失降低了8.4%,并改善了曲轴倾斜现象;而轴颈型线为马鞍型时,主轴承的最小油膜厚度下降了24.64%,最大油膜压力增加了4.56%,平均摩擦损失增加了2%,曲轴倾斜加剧;当曲轴轴颈型线为鼓型时,随着曲轴倾斜角度的增加,主轴承的最小油膜厚度减小、最大油膜压力增加、平均摩擦损失减小,随着转速的增加,主轴承的最小油膜厚度增加、最大油膜压力减小、平均摩擦损失增加。  相似文献   

5.
为分析整机体下主轴承-轴颈型线对润滑性能的影响,运用Reynolds流体润滑方程和Greenwood-Tripp微凸峰接触理论,计入轴颈倾斜和弹性变形的影响,建立基于柔性整机体的主轴承弹性流体动力润滑模型,通过仿真计算研究主轴承和轴颈型线对轴承润滑性能的影响。结果表明:相较于无型线和只考虑轴颈型线,同时考虑主轴承和轴颈型线下的主轴承最小油膜厚度明显增加,最大油膜压力减小,平均摩擦损失减小;同时考虑主轴承型线和轴颈型线时,在研究的范围内,随着轴颈倾斜角度的增加,主轴承的最小油膜厚度减小,最大油膜压力增加,平均摩擦损失减小;转速增加时,主轴承的最小油膜厚度增加,最大油膜压力减小,平均摩擦损失增加。因此在主轴承和轴颈型线设计时,需要考虑轴颈倾斜和工作转速2个因素。  相似文献   

6.
以某型柴油机主轴承为研究对象,计入主轴承表面粗糙度和弹性变形等因素,建立主轴承润滑状态的分析模型,分析了主轴承径向轴颈型线对润滑状态的影响.结果表明,与不考虑径向轴颈型线的计算结果相比,计入径向轴颈型线时,主轴承的最小油膜厚度增加了25.95%,最大油膜压力减小了17.69%,平均摩擦损失减小了6.14%,主轴颈倾斜现象有所改善.随着轴颈表面粗糙度的增加,主轴承的最小油膜厚度增加,最大油膜压力几乎不变,平均摩擦损失增加.  相似文献   

7.
为了更加准确地预测轴承性能,提高轴承工作可靠性和寿命。基于弹性流体动力润滑理论,建立了卧式两缸柴油机连杆大头轴承的弹性流体动力润滑仿真模型。应用正交试验设计方法,以最大油膜压力、最小油膜厚度以及平均总摩擦功耗为考察指标,研究了轴承间隙、轴瓦宽度、油孔位置角和曲柄销油孔直径等因素对轴承润滑性能的影响。研究结果表明:最优方案与原方案相比,最小油膜厚度增加44.86%,最大油膜压力降低1.00%,平均总摩擦功耗增加4.84%。  相似文献   

8.
表面形貌对内燃机主轴承润滑性能的影响   总被引:1,自引:0,他引:1  
李涵 《润滑与密封》2018,43(6):49-54
基于Patir和Cheng的平均流量方程和流量因子,计入表面形貌和弹性变形等因素,以流体润滑理论为基础,建立内燃机主轴承的润滑分析计算模型;研究主轴颈和轴瓦表面形貌对主轴承最小油膜厚度、最大油膜压力、摩擦损失总功和粗糙接触压力等润滑特性的影响。结果表明,轴颈和轴瓦表面粗糙度值大小和纹理方向对主轴承润滑性能具有显著影响,随着粗糙度值的增加,最小油膜厚度增加,油膜压力减小,粗糙接触压力增加,摩擦损失总功增大;相较横向纹理和各向同性,纵向纹理有利于提高最小油膜厚度,降低粗糙接触压力和摩擦损失总功;当粗糙度值不变时,随着内燃机转速和爆发压力的增加,粗糙接触压力增加,粗糙摩擦损失功率增加,导致磨损加剧效率降低。  相似文献   

9.
研究基于动态子结构缩聚的轴承热弹性流体动力学(TEHD)基本理论和求解方法;建立某V型8缸内燃机主轴承的TEHD仿真模型,分别计算得到各主轴承在最大载荷工况下的油膜压力、油膜厚度、摩擦功耗、轴心轨迹和油膜温度等润滑特性;针对润滑状况较差的第3主轴承,进行TEHD、EHD(弹性流体动力学)和HD(流体动力学)不同仿真求解方法的对比研究。研究结果表明,该内燃机的第3主轴承最小油膜厚度和最大油膜压力等润滑性能最差,需要进行相应的改进设计;TEHD求解中计及了润滑油和轴瓦热效应的影响,能获得更高的轴承润滑特性计算精度。  相似文献   

10.
针对曲轴主轴承润滑性能的影响因素研究,建立考虑轴颈直径、轴承宽径比和轴承间隙3种轴承结构参数的曲轴主轴承热弹性流体动力润滑模型,分析不同轴承结构参数下的主轴承最大油膜压力、最小油膜厚度、最高轴承温度和最大摩擦功率损失。计算结果表明:轴承结构参数对主轴承润滑性能有很大影响;当轴颈直径和轴承宽径比变大时,主轴承最大油膜压力会出现减小的情况,最小油膜厚度变大、最高轴承温度升高和摩擦功率损失增加;内燃机主轴承的轴承间隙会随着轴颈直径和轴承宽径比的不同而有不同影响,且轴承间隙对主轴承最高温度和最大摩擦功率损失的影响较为显著。  相似文献   

11.
针对某型柴油机功率提升后主轴承润滑性能出现恶化的现象,计及表面形貌和弹性变形等因素影响,建立12V150柴油机主轴承润滑分析模型。运用弹性流体润滑、轴承动力学及Greenwood-Tripp微凸峰接触理论,分析功率提升后的主轴承润滑性能,提出需要改进的参数。分析表明:主轴承润滑性能变差的原因主要是功率提升后,曲轴和主轴承承受载荷加剧,油膜压力增加,引起轴颈弯曲或倾斜,导致主轴最小油膜度减小。研究曲轴平衡率、轴承宽度和润滑油黏度等参数对主轴承润滑性能的影响,提出了将曲轴平衡率由70%增大至90%,轴承宽度由46 mm增大至48 mm,并合理增加润滑油黏度的改进方案。结果表明:曲轴平衡率能有效地减小主轴颈倾斜角度,而轴承宽度和润滑油黏度对轴颈倾斜几乎没有影响;改进后主轴承最小油膜厚度提升了16.08%,峰值粗糙接触压力减小了37.11%,平均摩擦损失总功减小了13.08%。  相似文献   

12.
柴油机主轴承弹性流体动力学与多体动力学耦合仿真   总被引:1,自引:1,他引:0  
为更准确分析柴油机主轴承润滑特性及其影响因素,根据动载滑动轴承弹性流体动力润滑模型,利用AVLExcite软件对4D32柴油机主轴承进行多体动力学与弹性流体动力学耦合仿真研究。探讨了各主轴承载荷、最小油膜厚度、轴心轨迹、摩擦损失功率、机油填充率等参数在一个工作循环内的变化规律,并对比了主轴承最小油膜厚度随油槽方向和油孔位置等因素的变化关系。结果表明,最小油膜厚度的极小值均大于2μm,对其进行计算时要考虑边界接触压力的影响;第3主轴承轴心轨迹曲线绝大部分落在最外端,偏心率最大值持续期较长,最大油膜压力时间交替作用在轴瓦表面,极易引起轴瓦的磨损和疲劳剥落;优化设计油槽、油孔的方向和位置,有利于流体动压润滑的形成。  相似文献   

13.
研究了影响主轴承摩擦功率损失的影响因素,包括轴承表面粗糙度、润滑油温度、曲轴转速、轴颈间隙和供油提前角,同时分析各影响因素对内燃机主轴承的影响。分析所用物理模型为直列六缸内燃机,其数学模型主要依据有限差分法与欧拉法求解雷诺方程,润滑油膜接触通过在时域内压力平衡迭代计算。对内燃机曲轴主轴承摩擦功率损失影响因素进行了探讨,计算结果表明,在内燃机零部件设计阶段应充分考虑轴承间隙以及表面粗糙度对摩擦功率损失的影响。  相似文献   

14.
计入热变形影响的内燃机主轴承热流体动力润滑分析   总被引:4,自引:0,他引:4  
根据动载滑动轴承热流体动力润滑理论,结合热变形矩阵法,提出一种考虑热变形因素影响时的内燃机主轴承热流体动力润滑分析方法,阐述该方法的基本理论和控制方程,探讨热变形因素对主轴承工作时的轴心轨迹、润滑油流量、最大油膜压力和最小油膜厚度等状态参量的影响情况.结合一主轴承实例进行数值仿真分析,仿真分析结果发现,计入热变形影响因素后,同未考虑热变形影响时分析得到的结果相比,轴心运动轨迹发生了很大变化,平均润滑油流量和一个载荷周期内的最大油膜压力均明显增加,一个载荷周期内的最小油膜厚度明显减小,润滑油平均温升则稍有减小.内燃机主轴承在工作时受各种热源因素的影响会产生热变形,在主轴承设计以及内燃机润滑系统供油量设计过程中考虑这种变形因素的影响是很有必要的.  相似文献   

15.
针对滑动轴承转子系统存在的尺寸误差,建立了非线性油膜力模型,着重研究了滑动轴承与轴颈直径误差及其交互作用对系统动力学特性、承载能力和稳定性的影响,并利用稳定性临界转速对应的偏心率,定量分析了偏心率对滑动轴承转子系统摩擦功率损失的影响。图形曲线分析表明,各种尺寸变化对系统会产生不同程度的影响,摩擦功率随着偏心率的增大而减小,当偏心率在0.6948附近时摩擦功率达到最小。研究结果为减小系统功耗、合理设计系统参数提供了可靠的依据。  相似文献   

16.
为了消除发动机连杆轴承在做功行程中两端出现的偏磨损,减少轴承的摩擦功耗,建立了某发动机曲轴系柔性多体动力学分析模型并进行了动力学仿真计算。根据连杆轴瓦内孔变形量仿真结果对轴瓦表面轮廓进行了修形设计。计算结果表明:对轴瓦轮廓修形后,轴承的润滑性能变化较小,最大油膜压力及最小油膜厚度随曲轴转角的变化趋势及数值大小均与原圆柱轮廓基本接近,消除了做功行程中的轴瓦偏磨问题,轴承的粗糙接触摩擦功耗无论是最大值还是平均值均降低,轴瓦表面粗糙接触压力沿轴瓦宽度方向分布均匀。  相似文献   

17.
建立计入热效应的浮环轴承流体动压润滑模型,利用数值差分法联立求解雷诺方程,进而求解浮环轴承端泄流量;通过与实验数据的对比,验证所建模型的正确性;考虑浮环受热膨胀变形的影响,研究供油温度对摩擦功耗、温升、浮动环转速、端泄流量等浮环轴承润滑静特性参数的影响。结果表明:提高润滑油供油温度会明显提升浮动环旋转速度,增大轴承内间隙的供油量,减小内外油膜摩擦功耗和端泄温升;端泄温升随轴颈转速的升高而增大,温升随轴颈转速变化的幅度在采用较低温度的润滑油时表现得更为剧烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号