首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于GREENWOOD和TRIPP微凸体接触理论,计入温度、弹性变形等影响因素,建立内燃机主轴承的数学模型和实体模型,计算研究其润滑性能与表面粗糙度之间的关系。结果表明,计入表面粗糙度后,由于微凸体接触力相对较小,油膜压力略有增加,油膜温度变化不大,摩擦功没有显著的增加;粗糙表面增大粗糙接触压力,造成轴颈不对中倾斜程度加剧;随着表面粗糙度的增加,油膜压力降低,厚度增加,峰值粗糙接触压力增大。  相似文献   

2.
李涵 《润滑与密封》2018,43(3):81-87
基于平均流量模型的广义Reynolds方程,推导考虑轴承形状误差的综合油膜厚度表达式;针对内燃机主轴承,建立其润滑分析计算模型,研究轴颈和轴瓦上的直线度误差和圆度误差对主轴承润滑性能的影响。结果表明:同种误差类型不同的素线线型影响差异较大,相较理想轴颈,都使得油膜压力增加,最小油膜厚度减小,摩擦损失功增加,其中线形峰值影响显著,线形对称性有利于改善轴颈倾斜;轴颈和轴瓦形状误差对润滑性能存在耦合的作用,其两者形状误差线形方向的差异使得部分地方油膜厚度出现增加或减小的情况;不同工况下形状误差对润滑性能的影响差异较大,随着转速的增加形状误差影响润滑性能程度加剧,最大油膜压力增加,最小油膜厚度减小,摩擦损失总功增大。  相似文献   

3.
以活塞式航空发动机滑动轴承为研究对象,综合考虑轴颈倾斜和轴瓦表面形貌等因素对轴承润滑特性的影响,建立滑动轴承润滑分析模型;以高斯随机表面、分形曲面、非高斯随机表面分别模拟轴瓦表面的粗糙程度,分析轴颈不对中和表面粗糙度耦合作用下油膜压力、端泄流量、承载力和轴承力矩等参数随偏心率和转速的变化规律。研究结果表明:考虑轴瓦表面形貌后轴承最大油膜压力变大,最小油膜厚度有小幅度减小;随着偏心率和转速增加,最大油膜压力、端泄流量、轴承承载力、工作力矩均增加;随着偏心率增加,考虑表面形貌时(高斯表面、分形表面、非高斯表面)的轴承油膜压力、承载力、工作力矩均变大;随着转速的增加,考虑表面形貌时的轴承润滑特性均变大,尤其是高斯表面,润滑特性变化较明显。  相似文献   

4.
基于弹性流体动力润滑、轴承动力学及平衡率计算理论,计入轴颈与轴瓦表面粗糙度、曲轴与轴承座弹性变形的影响,针对某大功率柴油机的曲轴系统,建立12缸V150柴油机主轴承的润滑分析计算模型,对12平衡重曲轴在不同平衡率下各主轴承的润滑性能进行分析,考虑轴承宽度、轴承间隙和供油压力等参数对平衡性较好的曲轴进行优化。结果表明:随平衡率的增加,最小油膜厚度先增加后减小,最大油膜压力和平均摩擦损失总功先减小后增大,平衡率80%的曲轴润滑性能较好,但主轴承MB5、MB6、MB7的最小油膜厚度均小于1μm;对其优化后各主轴承润滑性能均满足要求,且润滑性最差的主轴承MB7的最小油膜厚度增加19.7%,最大油膜压力减小11.8%。  相似文献   

5.
对一四缸内燃机曲轴轴承进行了计入曲轴受载变形和表面形貌的弹性流体动力润滑分析.计算中采用动力学法进行曲轴轴承的润滑分析,采用变形矩阵法计算油膜压力作用下轴瓦表面的变形.结果表明,表面形貌对曲轴轴承轴心轨迹影响较大,表面弹性变形对曲轴轴承轴心轨迹影响很小;计入表面形貌,曲轴轴承最大油膜压力增大显著,最小油膜厚度明显减小,端泄流量在大部分时间几乎没有变化;计入表面弹性变形,轴承最大油膜压力基本都有不同程度的减小;表面弹性变形对端泄流量、轴颈摩擦因数以及最小油膜厚度的影响甚小.  相似文献   

6.
以某型柴油机主轴承为研究对象,计入主轴承表面粗糙度和弹性变形等因素,建立主轴承润滑状态的分析模型,分析了主轴承径向轴颈型线对润滑状态的影响.结果表明,与不考虑径向轴颈型线的计算结果相比,计入径向轴颈型线时,主轴承的最小油膜厚度增加了25.95%,最大油膜压力减小了17.69%,平均摩擦损失减小了6.14%,主轴颈倾斜现象有所改善.随着轴颈表面粗糙度的增加,主轴承的最小油膜厚度增加,最大油膜压力几乎不变,平均摩擦损失增加.  相似文献   

7.
柴油机曲轴主轴承润滑性能分析   总被引:3,自引:1,他引:2  
基于弹性流体动力润滑(EHD)和轴承动力学理论,计及轴瓦、轴颈的粗糙度及曲轴和轴承座变形的影响,建立四缸内燃机主轴承的润滑分析模型。在此模型的基础上,分析轴承间隙、供油压力和轴承宽度等参数对内燃机主轴承润滑性能的影响。结果表明:第4轴承的最小油膜厚度较小,最大油膜压力较大,摩擦功耗最大,即具有较差的摩擦性能;为减少摩擦功耗,应在保证可靠的润滑性能的前提下,适当地增大轴承间隙、减小供油压力和减小轴承宽度。对第4主轴承进行优化分析,优化后的最小油膜厚度增大,最大油膜压力减小,摩擦功耗有所降低。  相似文献   

8.
基于统计学模型建立织构化轴承混合润滑与磨损的计算模型,通过生成轴瓦虚拟粗糙表面,分别利用平均流量雷诺方程、K-E弹塑性接触模型、Boussinesq积分、Archard型磨损方程求解油膜压力、粗糙峰接触压力、轴瓦的弹性变形和轴瓦表面磨损量。通过有限差分法和牛顿下山法对模型进行数值模拟,得到不同偏心率下的油膜压力、油膜厚度、轴瓦弹性变形、轴瓦表面粗糙峰接触压力及磨损量,并与其他混合润滑模型进行对比,验证了该模型的有效性。以圆形凹坑织构为例,研究在多种工况下,润滑状态转化以及织构对磨损过程的影响。研究表明:织构可以形成二次润滑,有利于流体润滑;随偏心率增大,进入混合润滑状态后,承载能力、粗糙峰接触载荷迅速增加,摩擦因数出现拐点;在混合润滑状态下,磨损过程前期表面织构会造成轴承承载性能降低和增大磨损,随着滑动轴承进一步磨损,表面织构可以起到减磨作用。  相似文献   

9.
轴承是影响内燃机安全运行的重要零件,内燃机的主要运动件中,大多采用滑动轴承。滑动轴承采用流体动力润滑,曲轴的旋转作用形成油楔承载,同时零件表面对油膜挤压产生承载力。内燃机的轴承承载油膜压力由旋转油膜压力和挤压油膜压力构成。主轴瓦和连杆轴瓦在交变载荷下工作,轴承载荷的方向、大小都是周期变化的,所以轴承内不能保持均匀、恒定的承载油膜。在高速、高负荷,特别是在润滑状态不良或进入磨料时,轴承中产生较大的摩擦损失,摩擦损失转变成热量使轴承温度升高,降低润滑油粘度,使承载能力下降,再加上轴承座及轴的变形,润滑油流量不足及变质等,使轴承工作条件恶化,造成轴承损坏,如磨  相似文献   

10.
针对某型柴油机功率提升后主轴承润滑性能出现恶化的现象,计及表面形貌和弹性变形等因素影响,建立12V150柴油机主轴承润滑分析模型。运用弹性流体润滑、轴承动力学及Greenwood-Tripp微凸峰接触理论,分析功率提升后的主轴承润滑性能,提出需要改进的参数。分析表明:主轴承润滑性能变差的原因主要是功率提升后,曲轴和主轴承承受载荷加剧,油膜压力增加,引起轴颈弯曲或倾斜,导致主轴最小油膜度减小。研究曲轴平衡率、轴承宽度和润滑油黏度等参数对主轴承润滑性能的影响,提出了将曲轴平衡率由70%增大至90%,轴承宽度由46 mm增大至48 mm,并合理增加润滑油黏度的改进方案。结果表明:曲轴平衡率能有效地减小主轴颈倾斜角度,而轴承宽度和润滑油黏度对轴颈倾斜几乎没有影响;改进后主轴承最小油膜厚度提升了16.08%,峰值粗糙接触压力减小了37.11%,平均摩擦损失总功减小了13.08%。  相似文献   

11.
以内燃机曲轴主轴承为研究对象,基于Reynolds方程和Greenwood-Tripp微凸体接触理论,考虑曲轴倾斜和弹性变形,建立其弹流润滑模型,分析不同轴颈型线对主轴承润滑特性的影响。结果表明:不同轴颈型线对主轴承润滑特性的影响有着明显的差异,相比于无型线轴颈,轴颈型线为鼓型时,主轴承的最小油膜厚度增加了38.12%,最大油膜压力减小了32.73%,平均摩擦损失降低了8.4%,并改善了曲轴倾斜现象;而轴颈型线为马鞍型时,主轴承的最小油膜厚度下降了24.64%,最大油膜压力增加了4.56%,平均摩擦损失增加了2%,曲轴倾斜加剧;当曲轴轴颈型线为鼓型时,随着曲轴倾斜角度的增加,主轴承的最小油膜厚度减小、最大油膜压力增加、平均摩擦损失减小,随着转速的增加,主轴承的最小油膜厚度增加、最大油膜压力减小、平均摩擦损失增加。  相似文献   

12.
柴油机主轴承弹性流体动力学与多体动力学耦合仿真   总被引:1,自引:1,他引:0  
为更准确分析柴油机主轴承润滑特性及其影响因素,根据动载滑动轴承弹性流体动力润滑模型,利用AVLExcite软件对4D32柴油机主轴承进行多体动力学与弹性流体动力学耦合仿真研究。探讨了各主轴承载荷、最小油膜厚度、轴心轨迹、摩擦损失功率、机油填充率等参数在一个工作循环内的变化规律,并对比了主轴承最小油膜厚度随油槽方向和油孔位置等因素的变化关系。结果表明,最小油膜厚度的极小值均大于2μm,对其进行计算时要考虑边界接触压力的影响;第3主轴承轴心轨迹曲线绝大部分落在最外端,偏心率最大值持续期较长,最大油膜压力时间交替作用在轴瓦表面,极易引起轴瓦的磨损和疲劳剥落;优化设计油槽、油孔的方向和位置,有利于流体动压润滑的形成。  相似文献   

13.
柴油机连杆大头轴瓦表面在加工过程中存在波纹度,表面波纹度严重影响轴承接触表面的润滑性能。针对这一问题,建立考虑表面波纹度的连杆组弹性流体动力学模型,分析不同波纹度幅值、阶次和数量对连杆大头轴承润滑特性影响规律。结果表明:随着波纹度幅值、阶次和数量的增加,最小油膜厚度总体先增大后减小,总摩擦功耗先减小后增大,表明合理分布的表面波纹度对轴承性能有积极影响,可提升轴承的润滑性能;基于Box-Behnken试验设计与响应面法对柴油机连杆大头轴承润滑特性进行研究,以轴瓦表面波纹度的幅值、阶次和数量为优化变量,以最小油膜厚度和总摩擦功耗为优化目标进行响应面分析,并结合带精英策略的非支配排序遗传算法进行优化。结果表明:不同轴瓦表面波纹度对连杆大头轴承润滑特性影响差异较大;相较轴瓦光滑表面,优化后最小油膜厚度增加了11%;总摩擦功耗降低了14%。  相似文献   

14.
大型船舶柴油机曲轴在螺旋桨轴向推力激励下,轴向运动较为明显。为探究轴向运动对于支撑曲轴的主轴承润滑的影响,以一船舶柴油机曲轴-轴承为研究对象,同时计入螺旋桨轴向激励和柴油机自身激励共同引起的轴向运动、微峰接触(干摩擦),建立船舶柴油机主轴承的混合润滑模型。运用有限元法计算曲轴轴向运动,结合动力学方法,通过求解计入轴向运动和表面粗糙的平均Reynolds方程获得油膜压力,基于Greenwood-Tripp接触理论获得表面微峰接触压力。结果表明:计入轴向运动后,轴承的油膜峰值压力和油膜摩擦功耗均降低,微峰接触峰值压力均增加,但8个轴承的微峰接触摩擦功耗则是有的增加、有的减少,且影响显著,原因较为复杂;计入轴向运动后,最小油膜厚度、端泄流量、轴颈中心轨迹等的变化相对较小。因此,为更加全面、更加准确地预测大型船舶柴油机主轴承的混合润滑,必须计入轴向运动的影响。  相似文献   

15.
为了消除发动机连杆轴承在做功行程中两端出现的偏磨损,减少轴承的摩擦功耗,建立了某发动机曲轴系柔性多体动力学分析模型并进行了动力学仿真计算。根据连杆轴瓦内孔变形量仿真结果对轴瓦表面轮廓进行了修形设计。计算结果表明:对轴瓦轮廓修形后,轴承的润滑性能变化较小,最大油膜压力及最小油膜厚度随曲轴转角的变化趋势及数值大小均与原圆柱轮廓基本接近,消除了做功行程中的轴瓦偏磨问题,轴承的粗糙接触摩擦功耗无论是最大值还是平均值均降低,轴瓦表面粗糙接触压力沿轴瓦宽度方向分布均匀。  相似文献   

16.
为研究粗糙度对浮环轴承静特性的影响,基于雷诺方程并结合随机粗糙模型建立粗糙形状的浮环轴承模型,采用有限差分法对模型进行求解,得到浮环轴承润滑过程中的油膜厚度和油膜压力分布。结果表明:油膜承载力随粗糙度的增大而增大,内层油膜承载力大于外层油膜承载力;端泄流量随粗糙度的增大而减小,内层油膜端泄流量大于外层油膜端泄流量;摩擦功耗随粗糙度的增大而增大,内层油膜摩擦功耗小于外层油膜摩擦功耗。  相似文献   

17.
为了揭示表面粗糙度对圆柱滚子轴承线接触稳态弹流润滑性能的影响,本文建立了具有表面粗糙度的圆柱滚子轴承弹流润滑模型,并推导出了摩擦系数方程;采用有限差分法求解了圆柱滚子轴承的弹流润滑性能,并分析了余弦粗糙度幅值、波长和纹理角度对圆柱滚子轴承弹流润滑性能的影响.数值结果表明:随着粗糙度幅值的增大,油膜厚度和油膜压力在粗糙度波峰波谷处的波动增大;随着粗糙度波长的增大,油膜厚度逐渐减小,油膜压力的波动逐渐减小;横向粗糙度更有利于提高承载能力,降低摩擦系数.因此,在合理的范围内增加粗糙度的幅度和波长,采用交叉纹理,有利于提高圆柱滚子轴承的弹流润滑性能.  相似文献   

18.
非道路两缸柴油机轴承热弹性流体动力润滑特性研究   总被引:1,自引:0,他引:1  
基于热弹性流体动力润滑理论和多体动力学理论,针对自主研发的非道路2D25卧式两缸柴油机,采用AVL Excite Power Unit软件建立曲轴轴承的多体动力学模型,探讨柔性整机体模型下轴瓦与轴承座的弹性变形、润滑油的黏温及黏压特性、轴瓦及轴颈的表面粗糙度及热效应等因素,建立轴承的润滑模型并计算不同工况下各轴承的载荷、油膜厚度、油膜压力和摩擦功耗。研究结果表明:随着转速的升高,主轴承的总摩擦功耗增加,轴瓦的热负荷增大;高转速下,第一主轴承(MB1)和第三主轴承(MB3)存在轴颈倾斜不对中,出现偏磨现象,导致第二缸爆发时主轴颈振动加剧;连杆轴承油膜压力分布均匀性较好,轴瓦热负荷低,在高转速下润滑效果更佳。  相似文献   

19.
为了更加准确地预测轴承性能,提高轴承工作可靠性和寿命。基于弹性流体动力润滑理论,建立了卧式两缸柴油机连杆大头轴承的弹性流体动力润滑仿真模型。应用正交试验设计方法,以最大油膜压力、最小油膜厚度以及平均总摩擦功耗为考察指标,研究了轴承间隙、轴瓦宽度、油孔位置角和曲柄销油孔直径等因素对轴承润滑性能的影响。研究结果表明:最优方案与原方案相比,最小油膜厚度增加44.86%,最大油膜压力降低1.00%,平均总摩擦功耗增加4.84%。  相似文献   

20.
为分析整机体下主轴承-轴颈型线对润滑性能的影响,运用Reynolds流体润滑方程和Greenwood-Tripp微凸峰接触理论,计入轴颈倾斜和弹性变形的影响,建立基于柔性整机体的主轴承弹性流体动力润滑模型,通过仿真计算研究主轴承和轴颈型线对轴承润滑性能的影响。结果表明:相较于无型线和只考虑轴颈型线,同时考虑主轴承和轴颈型线下的主轴承最小油膜厚度明显增加,最大油膜压力减小,平均摩擦损失减小;同时考虑主轴承型线和轴颈型线时,在研究的范围内,随着轴颈倾斜角度的增加,主轴承的最小油膜厚度减小,最大油膜压力增加,平均摩擦损失减小;转速增加时,主轴承的最小油膜厚度增加,最大油膜压力减小,平均摩擦损失增加。因此在主轴承和轴颈型线设计时,需要考虑轴颈倾斜和工作转速2个因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号