首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
微装配正交精确对准系统的设计   总被引:1,自引:1,他引:0  
针对平板类零件微装配系统设计过程中面临的问题,提出采用正交光学对准机构来实现用人机协同的微装配系统对微小型平板类结构件的高精度装配,并分析计算高精度对准机构模块产生的误差.建立了基于显微机器视觉及正交光学对准的微装配系统平台,用本文提出的方法进行了微装配实验,结果显示本装配系统在装配的一致性与装配效率方面有较大的改善与提高.提出的光学对准方法可有效地用于平板结构的硅微MEMS器件和非硅MEMS器件等集成的复杂微小型异构机电系统的装配,设计的平台具有很好的开放性和可移植性.棱镜正交对准机构产生0.001°的角度误差时,对准理论偏差小于0.98 μm,实际实验中微装配平台系统装配精度小于5μm,满足平板类微小型结构件装配一般精度需求.  相似文献   

2.
针对微小型零件装配过程中基体件尺寸过大与显微视觉视场较小相矛盾的问题,研究了显微视场下的微小型零件识别定位技术。为提高微装配精度,首先,通过图像预处理去除噪声干扰;然后,采用最小二乘法和形状模板匹配方法检测目标件参考基准点与偏角;最后,通过零件位姿信息的坐标转换,实现了微小型零件的精确装配。经过实验验证,关键零件的装配精度满足工艺要求,配合偏差优于5μm,平行度优于0.003°,该装配方案可靠地完成了跨尺度微小型零件的高精度装配。  相似文献   

3.
宏-微操作结合的自动微装配系统   总被引:5,自引:0,他引:5  
介绍了一类具有宏—微尺度结合特点的操作对象,对该类型操作对象的操作任务进行了分析。开发了用于PMMA微流控芯片批量化生产的微对准自动装配系统,该系统采用基于显微视觉图像分析的分视场对准机理。系统的主要硬件构成包括机械本体、视觉单元、4-DOF精密定位单元和全自动气动辅助单元。介绍了系统的控制结构。提出针对标记图像的对准精度测量方法,通过实验得到系统的对准精度为2.9μm。该系统可以高效、可靠地完成PMMA微流控芯片的微对准装配。  相似文献   

4.
为了实现微小磁性零件装配设备的精密装配任务,弥补加工误差和安装误差带来的系统精度损失,提出了一套自动标定及误差补偿方法。依照设备布置形式建立了不同模块的坐标系,提取影响装配精度的全部误差参数。根据导轨的位置关系建立了模块之间的运动转换模型,进而推导出基于装配任务的误差补偿模型。以设备中的机器视觉系统作为测量工具,同时设计专用标定板。通过观察各模块运动前后特征点的坐标变化对误差参数进行测量和辨识,并使用粒子群算法对参数进行了全局优化。基于开发的自动标定软件,在装配区域进行了标定和验证实验。实验结果表明,补偿后的系统开环控制精度在6μm以内,满足设备的装配精度需求。该方法为微小零件装配设备提供了自动化、高精度和高效率的标定方案。  相似文献   

5.
针对某微小易损零件在装配过程中易损坏的问题,采用有限元仿真对其薄弱部分的装配应力进行了分析.搭建了一套基于机器视觉和激光位移传感器的微装配系统,该系统主要包括1个3自由度机械手,1个3自由度精密视觉系统与测距传感模块和一套专用夹具.采用机器视觉系统实现了目标零件在XY平面内的精确定位.采用激光位移传感器与工控机所组成的闭环系统对目标零件装配过程中Z轴方向上的接触状态进行检测和控制,接触状态检测精度优于2μm.  相似文献   

6.
针对平板类微小零件装配特点,设计了一套基于真空吸附的微装配系统平台。采用真空吸附式微夹持器实现零件的夹持、释放,采用双CCD摄像头实现对零件的位姿识别,采用定位精度在(4~6)μm的位移台实现零件的定位。分析了位移台误差的来源,重点计算了位移台中步进电机和丝杠的累积误差,计算结果为(±1.405)μm,可以达到位移台的精度要求。重复定位精度对位移台精度起着重要的作用,以位移台中光栅尺为基准进行闭环控制,通过大量实验验证位移台的重复定位精度小于3μm。  相似文献   

7.
微型悬丝摆式加速度计惯性组件的构成零件多,形状及尺寸跨度大,易变形。目前,该组件主要采用人工装配,效率低,精度难以保证。为此,研制了专用悬丝摆式加速度计惯性组件自动装配设备。设备采用反射棱镜和单相机,从而实现了立体测量功能,并且设计了专用工装夹具。基于硬件设计和装配任务要求,制定了包含互适应的先看后动反馈控制策略,以及工装夹具保证+视觉/力觉反馈调整的精度控制策略。基于分层软件架构和模块化思想,开发了悬丝摆式加速度计惯性组件自动装配控制软件,实现了自动定位与装配功能。实验表明,摆组件的平行度小于15μm,对称度小于20μm,位置精度优于15μm,装配精度满足使用要求。  相似文献   

8.
针对平板类微小型零件装配中出现的自动化程度低、可靠性差的问题,提出基于主机+从控制器+多种传感器的微装配控制系统;设计了吸附式微夹持器代替卡爪式微夹持器,解决了平板类微小型零件难以夹持的问题;同时设计了基于单摄像机的光学自动对位系统,以完成装配件与装配基体之间的精确对位检测.实验中所搭建的微装配系统可较好地完成平板类微小型结构件的装配.  相似文献   

9.
基于机器视觉的微小特征定位是精密自动化装配的关键环节,外界干扰和零件本身差异等容易引起视觉引导错误,影响装配成功率,因此提出一种由粗定位与精定位两步组成的复合定位方法。首先通过基于卷积神经网络的目标框检测算法提取感兴趣区域实现粗定位,在此基础上通过轮廓几何特征配准的方式实现零件精定位,算法中还采用自动标注辅助的动态学习机制解决不同批次零件间差异导致定位失败率较高的问题。在自研的装配设备上对该方法进行测试,分析了亮度、离焦和位姿变化对视觉定位算法鲁棒性的影响,并进行了定位精度及小批量装配实验测试。结果表明:本文方法在多种干扰下的装配成功率达到97%,视觉定位的绝对精度与重复精度均优于2μm,装配精度优于10μm,能够满足精密微装配对定位算法精度与稳定性的要求。  相似文献   

10.
微装配机器人系统   总被引:5,自引:1,他引:4  
研制一种具备多操作手协调工作的微装配机器人系统,该系统包括两个4自由度的主微操作手和一个3自由度的辅助微操作手,并采用双光路正交显微视觉作为获取机器人和微对象的位姿与环境信息的主要手段.为适应不同形状和材质微目标的操作需要,分别设计真空和压电陶瓷两类微夹钳,以微夹钳工作原理分析为基础,给出微夹钳的控制依据.就显微图像获取和视觉伺服等问题进行研究,包括基于维纳滤波的模糊图像逆滤波器复原,基于图像分析的显微镜自动调焦,以及基于距离和角度图像特征的显微视觉伺服控制等.以人机交互的半自主方式控制机器人进行微装配作业.装配结果表明,系统工作可靠,能够完成具有复杂工艺要求的微装配任务,目前微零件最小装配精度可达30 μm.  相似文献   

11.
一种微型步进电机的微胶接装配方法的研究   总被引:1,自引:0,他引:1  
采用微胶接技术装配微型步进电机的基体和导轨。对胶粘剂的点胶特性进行实验,指出微电机胶接装配中影响胶接质量的两个关键因素是胶滴体积的不稳定和胶滴的扩散。为了解决该问题,在基体胶接区表面通过蚀刻方法加工出凹槽结构,给出凹槽尺寸的确定原则和胶接实验的条件。结果表明,凹槽结构对胶滴体积具有“容错性”,可以在一定程度上克服胶滴体积的不稳定和胶滴的扩散对微胶接装配质量的影响,但胶滴点胶的位置误差可能引起胶滴溢出凹槽。  相似文献   

12.
针对微颗粒空间装配的问题,以外径为十几微米的微颗粒与外径为几百微米的柱腔装配为研究对象,开展微颗粒空间跨尺度装配方法研究。首先,针对微颗粒受到基底表面作用力影响不易被拾取与释放的问题,分析了微颗粒的受力情况,设计了真空吸附式微夹持器用于微颗粒的拾取与释放;然后,针对由于微颗粒与柱腔的尺寸跨度大,很难实现装配过程中二者空间位置实时监测的问题,设计了具有多维视觉监测功能的微装配机器人并且建立了多维视觉监测模型,实现微颗粒与柱腔装配过程的在线监测;最后,提出了基于多维视觉监测模型的微颗粒与柱腔空间半自动装配方法。实验结果证明了所提方法的有效性,并且实现了将外径为20μm的微颗粒放入外径为200μm的柱腔内的目标。该方法适用于微机电系统制造中微颗粒的三维空间装配。  相似文献   

13.
辛明哲  罗怡  陈勇  王晓东 《机电工程》2013,(12):1462-1466
为解决具有挠性结构微小零件精密装配的问题,将基于机器视觉的精密测量技术、高分辨率非接触激光位移测量技术等应用到精密装配系统的研制中.设计了用于微小零件夹持的装置,实现了对微小挠性零件拾取、搬运、放置等操作;根据视觉系统测量得到的微小零件与目标位置的偏差,对微小零件水平面内的位置和姿态进行了调整;提出了装配微小零件挠性结构的接触控制方法,该方法通过激光位移传感器非接触测量挠性结构接触变形所引起的微小位移变化,实现了装配过程中垂直方向的精密接触控制;通过在作业机械臂上集成标定模板,实现了装配系统的自动标定.简要介绍了所研制的装配系统组成,并进行了微小挠性零件的装配实验.实验结果表明,微小零件装配的平行度、同轴度误差小于10 μm,挠性结构接触控制偏差为0.6 μm ~0.8 μm,装配精度满足使用要求.  相似文献   

14.
采用过电铸工艺制造金属微细阵列网板   总被引:1,自引:0,他引:1  
针对制作尺度10μm的超小微细阵列网板非常困难的问题,提出了采用过电铸工艺制造超小尺寸微细阵列网板的方法。建立了过电铸工艺过程的电场模型,利用有限元分析技术对过电铸工艺过程进行模拟仿真。选取优化的工艺参数(烘胶120℃/60min,曝光3000mJ/cm2,显影2min等)利用光刻制作了高度为50μm、直径为50μm的AZEXP125nXT-10A光刻胶群柱结构,以此胶膜结构作为模具进行了过电铸工艺实验,并与仿真结果进行对比,结果证明了有限元仿真的正确性。最后,通过过电铸缩孔2h获得了厚度达70μm,孔径为4μm的微细阵列网板结构。实验表明,过电铸工艺是一种低廉、安全、可批量生产的制作超小阵列网板的方法。  相似文献   

15.
吴跃民  刘荣  董代 《中国机械工程》2005,16(14):1235-1239
开发了用于光电子器件对准的显微立体视觉系统。该系统采用两个光轴交汇的可变焦镜头和CMOS摄像机采集图像;用调节螺钉实现视场匹配与聚焦匹配;采用了带误差修正的线性成像模型进行标定;标定控制点图像坐标的提取则利用Hough变换的方法来提高精度。目前,该系统已成功用于光电子器件对接机器人的视觉测量中。  相似文献   

16.
针对微结构聚合物元器件的批量化生产与制造效率低等问题,采用精密修整成V形尖端的金刚石砂轮,在自润滑性和脱模性良好的钛硅碳陶瓷模芯表面加工制造出形状精度可控的V沟槽阵列结构,然后利用微注塑成形工艺将模芯表面的V沟槽阵列结构一次成形复制到聚合物表面,高效注塑成形制造出倒V形阵列结构的聚合物工件。分析了微模芯的表面加工质量与形状精度,研究了熔体温度、注射速度、保压压力、保压时间等微注塑成形工艺参数对微结构聚合物注塑成形角度偏差和填充率的影响。实验结果表明:通过微细磨削加工技术和微注塑成形工艺可以高效率、高精度地制造出规则整齐的微结构注塑工件,注射速度对微成形角度偏差的影响最大,保压压力对微成形填充率的影响最大,微结构模芯的微细磨削形状精度值为4.05 μm,微成形的最小角度偏差和最大填充率分别为1.47°和99.30%。  相似文献   

17.
叶鑫  张之敬  赵婷  王豫枢 《中国机械工程》2006,17(18):1927-1930
针对微小型器件尺寸小及强度和刚度低,难以保证装配精度及装配过程中易损坏的特点,提出了微小型器件装配中虚拟检测技术的概念和方法。对于典型的装配关系,分别采用理论简化建模、有限元分析两种方法进行应力、应变的研究。在实例分析过程中,建立了微小型圆轴和套装配的理论模型,通过虚位移原理得出装配过程中不同参数值下的应力应变关系;建立了圆轴与套装配、D型轴与齿轮装配的有限元模型,验证了数字化微装配中虚拟检测技术的正确性、必要性和重要性。  相似文献   

18.
矩形离子阱(RIT)不仅具有线性离子阱(LIT)捕获效率高和存储容量大等特点,还兼具圆柱形离子阱(CIT)易加工和装配的优点,具有小型化的优势。为了使RIT进一步微小型化,本研究采用微机电系统(MEMS)和激光切割技术加工微小型RIT,并通过模拟仿真分析RIT的各项参数与其内部电场成分的关系。结果表明:固定离子阱非出射方向的场半径为1.4 mm,拉伸离子出射方向的场半径为1.60 mm,在电极厚度为50 μm时,分析m/z 119离子的质量分辨率可达到452。使用MEMS工艺可制备高精度、微米级的微小型RIT。质谱分析表明,制备的微小型RIT对m/z 391的邻苯二甲酸二辛酯具有高于500的质量分辨能力,该结果验证了其结构设计的正确性以及MEMS工艺制备的可行性,为矩形离子阱的进一步微小型化奠定了良好基础。  相似文献   

19.
刘英 《光学精密工程》2008,16(11):2065-2071
太赫兹波是一种非常有科学价值的电磁波。文中利用谐衍射元件独特的色散性质,将谐衍射透镜应用于14-50µm太赫兹成像系统中,使系统在15.8-16.2µm, 18.5-20µm,23-25µm,30.5-33.5µm和46-50µm五个谐振波段内的轴向像差最大为0.75mm。各谐振波段内的放大率是波长的函数,图像重构时将引起像元的配准误差,利用光学二组元法设计的变焦结构成功地解决了这一问题。设计结果表明:系统像高恒定为6.74mm;变焦结构还具有很好像差补偿作用;在10对线/mm时,光学传递函数在五个谐振波段内均达到衍射极限;实现了轻、小、易加工的设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号