首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126541篇
  免费   10606篇
  国内免费   5499篇
电工技术   7472篇
技术理论   4篇
综合类   7959篇
化学工业   20142篇
金属工艺   6990篇
机械仪表   7412篇
建筑科学   9596篇
矿业工程   2743篇
能源动力   3491篇
轻工业   9252篇
水利工程   2315篇
石油天然气   6379篇
武器工业   869篇
无线电   16406篇
一般工业技术   16103篇
冶金工业   6631篇
原子能技术   1418篇
自动化技术   17464篇
  2024年   501篇
  2023年   1935篇
  2022年   3453篇
  2021年   4881篇
  2020年   3501篇
  2019年   2936篇
  2018年   3259篇
  2017年   3887篇
  2016年   3433篇
  2015年   4666篇
  2014年   6094篇
  2013年   7768篇
  2012年   8077篇
  2011年   9104篇
  2010年   7971篇
  2009年   7606篇
  2008年   7523篇
  2007年   7289篇
  2006年   7082篇
  2005年   5907篇
  2004年   4018篇
  2003年   3363篇
  2002年   3350篇
  2001年   2863篇
  2000年   2793篇
  1999年   3004篇
  1998年   2740篇
  1997年   2385篇
  1996年   2215篇
  1995年   1806篇
  1994年   1463篇
  1993年   1135篇
  1992年   942篇
  1991年   715篇
  1990年   576篇
  1989年   465篇
  1988年   383篇
  1987年   284篇
  1986年   227篇
  1985年   196篇
  1984年   156篇
  1983年   105篇
  1982年   105篇
  1981年   81篇
  1980年   69篇
  1979年   46篇
  1978年   35篇
  1977年   39篇
  1976年   61篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Tang  Haina  Zhao  Xiangpeng  Ren  Yongmao 《Wireless Networks》2022,28(3):1197-1202
Wireless Networks - Geolocation is important for many emerging applications such as disaster management and recommendation system. In this paper, we propose a multilayer recognition model (MRM) to...  相似文献   
3.
Zhao  Ziyu  Lin  Haitao  Ma  Pibo 《Applied Composite Materials》2022,29(4):1675-1694
Applied Composite Materials - In this paper, the low-velocity impact deformation behavior of biaxial warp-knitted flexible composite was investigated. A simplified finite element model (FEM) of the...  相似文献   
4.
5.
Hydraulic fracturing with slickwater is a field-proven stimulation technology used in tight reservoirs. Because of the high pumping rate associated with slickwater fracturing, drag reduction (DR) is critical in minimizing pressure drop and the success of oilfield operations. In this paper, a new type of drag reducer (SPR) was synthesized with acrylamide and 12-allyloxydodecyl acid sodium, and its drag reduction performance was evaluated. The results showed that the new drag reducer features low molecular weight, fast-dissolving rate and low interfacial tension. The algorithm of estimating the drag reduction rate of non-Newtonian fluid SPR was proposed and validated. Empirical or semianalytical models for estimating the friction ratio (σ) or friction factor (λ or f) were used to simulate the turbulence behavior of the SPR drag reducer under different Reynolds numbers (Re). The modified Virk's correlation could accurately model the turbulent behavior of the SPR drag reducer. A unified calculation formula was established in this study for different pipe diameters.  相似文献   
6.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
7.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
8.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
9.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
10.
The potential of using high metals containing coal gangue and lignite to prepare high-activity coal char-based catalysts is investigated for effective biomass tar decomposition. Loose structure and rough surface are formed for these char-based catalysts with heterogeneous distribution of a large number of inorganic particles. In the biomass tar decomposition, the performance of the coal char-based catalysts is significantly influenced by the content of the metals in the raw materials and coal gangue char (GC) with the ash content as high as 50.80% exhibits the highest activity in this work. A high biomass tar conversion efficiency of 93.5% is achieved at 800 °C along with a significant increase in the fuel gas product. During the five-time consecutive tests, the catalytic performance of GC increases a little at the second or third times reuse and remains relatively stable, showing the remarkable stability of the catalyst in biomass tar decomposition applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号